

Titration Tango

13% of total										
Question	Titration 1	Titration 2	<u>2.1</u>	2.2	2.3	2.4	2.5	2.6	2.7	<u>Total</u>
Points	30	<u>40</u>	5_	4	<u>4</u>	2	1	2	2	<u>90</u>
Score										

Procedure:

Part I. Dilution of Unknown Iron Ore Sample

Mass of simulated iron ore [mg] (Report the
value on the label)

Part II. Direct Titration of Iron Ore Solution

Analysis Nr.	V ₁ [mL]
1	
2	
3	
Reported value V ₁ [mL]	

Titr.1 (30 pt)

Part III. Titer preparation

Mass of calcium chloride dihydrate [mg] (MW =	
147.0 g/mol)	
(Report the value on the label)	

55TH INTERNATIONAL CHEMISTRY OLYMPIAD SWITZERLAND 2023

Part IV. Indirect Titration of Iron Ore Solution

Analysis Nr.	V ₂ [mL]
1	
2	
3	
Reported value V ₂ [mL]	

Titr.2 (40 pt)

Questions

Practical

55[™] INTERNATIONAL CHEMISTRY OLYMPIAD SWITZERLAND 2023

2.1 (5 pt)

Provide the chemical formula of the resulting EDTA complex formed in the direct titration up to the equivalence point. The structure of EDTA is given below. In your chemical formula, abbreviate EDTA as " H_4Y ", its conjugate bases as " H_3Y -", " H_2Y^2 -" etc. Hint: Under these conditions, one of the metal ions in solution preferentially forms an EDTA complex.

Structure of EDTA (equivalent to H_4Y).

2.2 (4 pt)

<u>**Calculate**</u> the mass percentage of iron(III) chloride (without water of crystallization), in wt.%, of the provided sample. The molar mass of FeCl_3 is 162.2 g/mol.

Practical

55TH INTERNATIONAL CHEMISTRY OLYMPIAD SWITZERLAND 2023

2.3 (4 pt)

<u>Calculate</u> the mass percentage of calcium chloride (without water of crystallization), , in wt.%, of the provided sample. The molar mass of CaCl₂ is 111.0 g/mol.

wt.%(CaCl₂) =

2.4 (2 pt) **Calculate** the mass percentage of water of crystallization, wt.%, of the provided sample.

wt.%(H_2O) =

2.5 (1 pt) Why is it necessary to keep the sample solution **A** at pH < 2?

Identify the correct answer among the four choices below.

 \Box To chemically stabilize Ca²⁺ in solution \Box To chemically stabilize Fe³⁺ in solution

- □ To reduce Ca^{2+} in solution □ To reduce Fe^{3+} in solution

Practical

55[™] INTERNATIONAL CHEMISTRY OLYMPIAD SWITZERLAND 2023

2.6 (2 pt)

The solution you were given simulates the digestion of iron ore with concentrated HCl. Which of the following mixtures could be analyzed by the same procedure?

Identify the correct answer among the four choices below.

□ Hematite (Fe_2O_3) + Limestone ($CaCO_3$) □ Magnetite (Fe_3O_4) + Chalcopyrite ($CuFeS_2$) □ Ilmenite ($FeTiO_3$) + Goethite (FeO(OH)) □ Siderite ($FeCO_3$) + Dolomite ($CaMg(CO_3)_2$)

2.7 (2 pt)

Why does the sample for the indirect titration show a color change from blue to red regardless of the progress of the titration?

Identify the correct answer among the four choices below.

□ Reduction of Fe³⁺ EDTA complex by ethanol

□ Hydrolysis of Eriochrome® Black T under basic conditions

□ Irreversible ligand exchange of Fe³⁺ EDTA complex by Eriochrome® Black T

□ Eriochrome® Black T adsorption onto precipitated CaCO₃