

Bleach, a Chameleonic Reagent - Answer Sheet

	16% of total												
Question	Yield A	TLC A	Deductions A	Yield B	TLC B	Deductions B	1.1	1.2	1.3	1.4	1.5	1.6	Total
Points	25	3 _∞	<u>-6</u>	25	<u>3</u>	-25	4	2 ∼	2 ∼	<u>2</u>	2 ∼	2 ∼	70
Score													

Thin Layer Chromatography (TLC) Analysis

Templates for **step 8** of the TLC analysis:

Submitted Items

Product A		
Product B		
TLC A		
TLC B		
Signatures		
	Student	Lab Assistant

Analytics - Reserved for administration (not to be filled by the participant)

Yield.A $(25 \mathrm{\ pt})$
TLC.A (3 pt)
Ded.A $(-6 \mathrm{\ pt})$
Yield.B~(25~pt)
TLC.B (3 pt)
Ded.B $(-25~\mathrm{pt})$

Questions

A
$$C_8H_8O_3$$
 $pH \approx 11$ $p-methoxy-acetophenone$ $p-methoxy-acetophenone$

Legend for translation: Bleach, p-methoxyacetophenone, major product

Answer each of the following questions by ticking the appropriate checkbox (1 correct answer per question; ambiguous answers will be marked as incorrect).

Practical

1	1	(1	nt
-1	. 1	(4	DL

1.2 (2 pt) Identify the structure of product A (empirical formula C ₈ H ₈ O ₃):
d. Does your product B contain some remaining starting material? <u>Choose</u> the correct answer. Ves No
c. Does your product A contain some remaining starting material? Choose the correct answer. \Box Yes \Box No
 b. Which of the following two compounds is more polar, product A or the starting material (SM)? Choose the correct answer. □ Product A □ Starting Material
 a. Which of the two products is more polar, A or B? <u>Choose</u> the correct answer. □ Product A □ Product B
Answer questions a-d based on the above <u>sketch</u> of your TLC plates (stationary phase: SiO_2 on aluminium; eluent: hexane/EtOAc in a 80:20 ratio). No points will be attributed if the sketch is not done.

1.3 (2 pt)

As apparent from the empirical formula of product \mathbf{A} ($C_8H_8O_3$), a C_1 fragment is cleaved off the starting molecule ($C_9H_{10}O_2$) in the course of the formation of \mathbf{A} . After the reaction, the C_1 (= one carbon atom containing) fragment ends up containing chlorine. **Identify** its structure:

CH ₃ CI	CH ₂ Cl ₂	CHCl ₃	CCI ₄	

Practical

1.4 $(2 \mathrm{\ pt})$ The formation of product A is a redox reaction. a. In this reaction, which atom type (element) is affected by an <u>increase</u> in oxidation number? <u>Choose</u> the correct answer:						
	С	Н	О	CI		
b. In this reaction, which atom type (element) is affected by a <u>decrease</u> in oxidation number? <u>Choose</u> the correct answer.						
	С	н	0	CI		
1.5 $(2 pt)$ <u>Identify</u> the structure of product B (empirical formula C ₉ H ₉ ClO ₂):						
cı Oo				CI O	CI	
1.6 $(2 \mathrm{pt})$ At some point in the synthesis of product B, NaHSO ₃ (aq) is added to the reaction mixture. While serving its purpose, hydrogensulfite ($\mathrm{HSO_3^-}$) undergoes a chemical reaction. Identify the resulting sulfur-containing species. Note that this question is not aimed at the protonation state of the resulting S-containing species (acid-base equilibria are ignored here).						
	HS⁻ □	S ₈	HS ₂ O ₃ [−]	HSO ₄ [−]		