14 Aug. 2017

MINISTRY OF SCIENCE, RESEARCH AND TECHNOLOGY NATIONAL ORGANIZATION FOR EDUCATIONAL TESTING

10th International Olympiad Summer 2017

22th National and the 10th International **Chemistry Olympiad** Summer 2017 Iran

Organic Chemistry I, II, III and Spectrometric Identification of organic Compounds

Do NOT write here

Time: 90 minutes

Question No.	Points for each question	Signature	total score (out of 100)	
1	/10			
2	/10			
3	/10			
4	/10			
5	/10			
6	/10			
7	/10			
8	/10			
9	/10			
10	/10			

Im	no	rta	nt	N	ot	e:
T 111	pυ	ııu	111	T. 4	UL	· •

Please write your personal information only in the appropriate boxes provided on this page. Do not write on any other pages.

Do NOT write here

First name:

Last name:

Exam title:

Exam data:

14 Aug. 2017

 The rate of the following reaction are the same when HX = HCl and or HBr, but the ratio of the products are different. when using the emixture of HCl and HBr Explain the reasoning and predict the major product.

$$\begin{array}{c|cccc}
Me & & HX & Me \\
Me & & Me & X
\end{array}$$

$$Me & Me & X$$

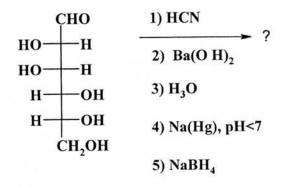
2. Draw the mechanism of the following reaction.

$$\bigcirc C \equiv CH \xrightarrow{H_+} \bigcirc O$$

3. Suggest methods for converting A to B

$$CH_2$$
 CH_3 OH

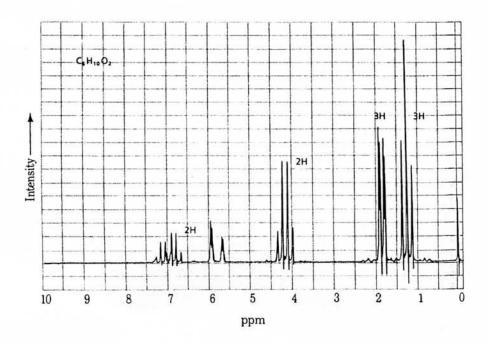
A to E are different compounds. On the basis of the following information 4. provide their structures.

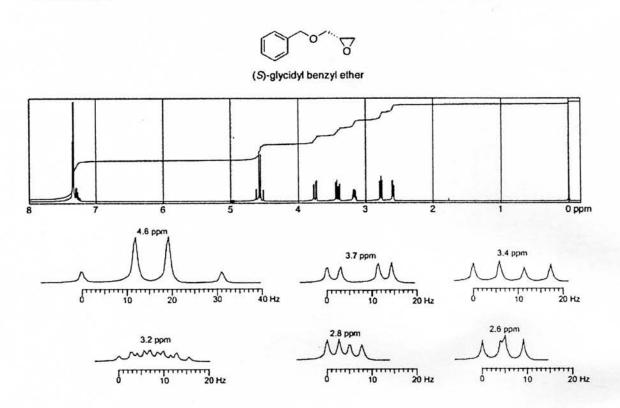

Me
NHEt
$$\begin{array}{c|c}
Me \\
\hline
NHEt
\end{array}$$

$$\begin{array}{c|c}
1) CH_3I \text{ (excess)} \\
\hline
2) Ag_2O, H_2O
\end{array}$$
B
$$\begin{array}{c|c}
A \\
\hline
3) heat$$

B
$$\xrightarrow{1) O_3}$$
 C $\xrightarrow{\text{NaOCH}_3}$ D $\xrightarrow{\text{[Ag(NH_3)_2]} \text{HO}^-}$ E

5. Provide a reasonable synthesis of A from the given starting material. Provide the reagents and condition (s) in each step.


6- Indicate the final product of the following reactions.


7- Provide a reasonable mechanism for the following reaction.

8- Optically active A racemized on heating at 50°C with a half-life of 24h. Provide a reasonable mechanism.

9- Deduce the structure of the compound from to molecular formula and ¹H NMR spectrum shown below.

10- Analyze the proton NMR spectrum in detail; provide the ¹H assignment and the *J* constants.

