химфак МГУ, весна 2017

Строение кристаллических веществ и материалов

лекция №6

Рентгеновское излучение. Рентгеновская дифракция

І. Точки, линии и плоскости в кристалле

Как задают положения атомов в ячейке

	x/a	y/b	z/c	(0 ≤ x _i /a _i ≤ 1)	
C(1) C(2) H(1)				+ $\begin{bmatrix} a, b, c \\ \alpha, \beta, \gamma \end{bmatrix}$	атомная структура
итл					присталла

Кристаллографические направления: индексы [u v w]

(u,v,w – координаты ближайшего узла)

В трехмерной (3D) решетке

Симметрически связанные направления (u v w): решетка + кристаллический класс

Рпа2₁ (класс **mm2**): $\langle 111 \rangle$ = набор [1 1 1] Рbca (класс **mmm**): $\langle 111 \rangle$ = набор [1 1±1]

В декартовой системе координат направление [uvw] задает также систему кристаллографических плоскостей

(210), или (hkl): h=u, k=v, l=w Но кристаллографические системы — не декартовы

$$\boldsymbol{b}_{\mathrm{Y}} = b/\mathrm{k}$$

 $\boldsymbol{c}_{\mathrm{Z}} = c/l$

«Рациональные» плоскости, нормальные к кристаллографическим направлениям, не проходят через узлы решетки

Кристаллографические плоскости: индексы Миллера (hkl)

2D-решетка: (h k)

Кристаллографические плоскости в 3D-решетке

 $(1\ 0\ 0) \qquad (2\ 1\ 0) \qquad (2\ 1\ 2)$

октаэдр

форма {111}: грани ($1 \pm 1 \pm 1$)

грань (100)

(100)

класс **m 3 m** форма {100}: куб; грани (100), (0±10) и (00±1)

II. Рентгеновское излучение

Спектр электромагнитного излучения

Рентгеновское излучение

Жесткое (коротковолновое) электромагнитное излучение

λ(Å) ≈ 12.40/ Е(кэВ)

используется в рентгеновской дифракции

1895: Вильгельм Конрад Рентген, открытие Х-лучей

1896, Вихерт и Стоукс: Х-лучи - очень короткие электромагнитные волны

1907, Вин: оценка длины волны рентгеновского излучения ~10⁻⁸ см

1910, Лауэ: уравнения для "атомных" 2D- и 3D-дифракционных решеток

1912, Фридрих и Книппинг: первая дифрактограмма

Источники рентгеновского излучения

- 1. Радиоактивные изотопы (ү–излучатели)
- Рентгеновские трубки: (а) с неподвижным анодом
 (б) с вращающимся анодом
- 3. Ускорители легких частиц, лазеры на свободных электронах (СИ: синхротронное излучение)

Рентгеновская трубка (схема)

Один из первых рентгеновских снимков

Первая рентгеновская установка (1912г.) и первая дифрактограмма кристалла медного купороса

Die erste Ronigen-Sunchlenchting eines Rogstalls. M.v. Lang

Вид спектра излучения рентгеновской трубки

Происхождение линий в спектре

Синхротронное излучение (СИ)

γ=E_{кин}/(m₀c²) ~ 10³-10⁴ (соотношение Лоренца) ультрарелятивистские электроны УЗКИЙ И **ОЧЕНЬ** ЯРКИЙ ПУЧОК ФОТОНОВ

энергия пучка электронов 1-10 ГэВ электронный ток 50-500 мА время жизни пучка ~2-200 час интенсивность СИ ~ γ^4 , т.е. ~ m_0^{-4}

- 1,2 линейный ускоритель (linac)
- 3 предускоритель (booster)
- 4-7 накопительное кольцо
- 4 поворотный магнит
- 8 канал СИ
- 9 экспериментальная станция
- 10 стена биозащиты

III. Рентгеновская дифрактометрия

Виды излучения, используемые в дифрактометрии

	λ, Å	f(q)	среда	теория
рентгеновское	0.5 – 2.5	убыв., ~Z	воздух	есть
нейтроны	~1 co	nst, независ. от Z	воздух	есть
электроны	0.02–0.05	убыв., ~Z ^{1/3}	вакуум	будет

λ=h/mv соотношение де Бройля

Нейтроны (тепловые): v ≤1 км/с, λ ~ 1Å

Рассеяние на кристалле: формула Брегга – Вульфа

2d sin θ = nλ (n = 1, 2, 3...)

Георгий Викторович Вульф (1863-1925)

Координатная сетка для стереографической проекции (сетка Вульфа)

1913 г: независимый вывод формулы Брегга-Вульфа: 2d_{hkl}sinθ = nλ

оптический гониометр:

- 1 источник света
- 2 механика (лимбы)
- 3 монокристалл
- 4 зрительная труба

рентгеновский дифрактометр:

- 1 высоковольтный генератор
- 2 рентгеновская трубка
- 3 образец (монокристалл
 - или кристаллич. порошок)
- 4 детектор
- 5 механика (гониометр)
- М монохроматор

Брегговские монохроматоры

 $2d_{hkl}\sin\theta = \lambda$

Методы получения дифракционной картины

 $2d_{hkl}sin \ \theta = \lambda$

1. Монокристалл, «белое» излучение – метод Лауэ

- 2. Кристаллический порошок, монохроматическое излучение порошковая дифрактометрия, рентгенофазовый анализ (РФА)
- Монокристалл, монохроматическое излучение
 (λ фиксирована, гониометр с варьируемыми углами)
- рентгеноструктурный анализ (РСА)

IV. Рентгенофазовый анализ (РФА)

Порошковая дифрактометрия

Много мелких произвольно ориентированных кристаллов – все системы атомных плоскостей в отражающем положении – «конусы» из рефлексов (h₀ k₀ l₀) от каждого кристаллита – узкие дифракционные «кольца»

Участок дифрактограммы

Схема съемки с 1Dдетектором (PSD: Position Sensitive Detector)

Подготовка образца для съемки

1 - кварцевая кювета с порошком

Порошковый дифрактометр Stoe θ - θ

1 - генератор, 2 - гониометр, 3 – защитный кожух, 4 – управляющий компьютер

Вертикальный гониометр с геометрией $\theta-\theta$

рентгеновская трубка, 2 – коллиматор, 3 – монохроматор,
 4 – детектор, 5 – горизонтально расположенный образец

Порошковая дифрактограмма YTaO₄

Рентгенофазовый анализ (РФА)

- Поликристаллические образцы (порошки, минералы, металлические изделия)
- Определение параметров элементарной ячейки, пространственной группы
- Качественный и количественный фазовый анализ, исследование фазовых переходов и химических реакций
- Банк данных PDF
- Определение средних размеров кристаллов, зерен в образце или распределение их по размерам
- Изучение внутренних напряжений в образце (по профилю и сдвигу линий)
- Изучение текстур (характера преимущественной ориентации)

«Раздвоение» рефлексов на больших углах 20: дублет Ка₁/Ка₂

Таблица межплоскостных расстояний d_{hkl}: «паспорт» кристаллического вещества

корундовое число: I(100%)_{в-во Х}/I(100%)_{α-Al2O3} в смеси 1:1 (по весу)

угол рассеяния 20, град.

Представление данных РФА: таблица межплоскостных расстояний

! STOE Peak File : Si_test_04.pks ! Created at 10-Dec-11 13:19 by WinXPOW Version : PKS_2.01 Title : Si_test Diffractometer : Theta-Theta Monochromator : Secondary Wavelength : 1.540598 Cu Detector : Scintillation Counter Scan Mode : Reflection Scan Type : 2Theta:Omega

! Raw data file used : D:\YLS\Si_test_04.rmb
! created : 27-Oct-08 14:26
! Peak search parameters : Expected halfwidth : 0.150
! Significance level : 2.5
! Peak height level : 40

<u>Peaklist [Range 1 : 2Theta = 27.000 120.000 0.040 Imax = 1259]</u>

D	2Theta	I(rel)	I(abs)	I(int)
3.139509	28.4058	100.00	1242	0.00
1.921110	47.2771	50.49	627	0.00
1.638227	56.0949	26.30	327	0.00
1.358272	69.0988	6.56	81	0.00
1.246372	76.3453	9.98	124	0.00
1.108797	88.0091	11.54	143	0.00
1.045409	94.9258	6.68	83	0.00
0.960196	106.6873	4.24	53	0.00
0.918102	114.0720	6.86	85	0.00

Автоматическое индицирование NaCl

Определение компонентов смеси веществ

File	l <mark>atch</mark> Vie	n ! - [mix5.mi ew Pattern	d] Peaks Search Entry Tools Help						_	<u>a</u> ×
	2 🗖			A N2						
				l Barro	D(nonknos)		L acolo fet	Ourset (%)	L EoM [
96 L	olor Qu	uai. Entry	Formula	Evperimental pattern: m 001 (m 001 2 rmb)	1 0000	1 0000	1 0000	Quant.(%)	1.0000	- 4
츈		T 01-073-1402	Mg S2 Q3 (H2 Q)6	Magnesium Sulfate Hydrate		0.8271	0,1980	I/Ic avail.	0.8342	- 1
*		B 01-070-0859	Ca8.5 Na Al6 018	Calcium Sodium Aluminum Oxide	0,1899	0.8497	0.5014	I/Ic avail.	0.8337	<u>h.</u>
Щщ.		I 01-086-1943	Ag8 (Ge3 O10)	Silver Germanium Oxide	0.2350	0.7869	0.3419	I/Ic avail.	0.8311	
		B 01-083-1359	Ca8.393 Na0.875 (Al5.175 Fe0.45 Si0.375 O18)	Calcium Sodium Aluminum Iron Silicon Oxide	0.1854	0.8371	0.5401	I/Ic avail.	0.8304	
		* 01-087-1489	K2 Co (Si O4)	Potassium Cobalt Silicate	0.2308	0.8720	0.5580	I/Ic avail.	0.8295	
		* 01-087-0442	Cs2 Mn3 Te4	Cesium Manganese Telluride	0.2099	0.9011	0.2203	I/Ic avail.	0.8266	
		* 01-087-0831	Cs2 Mn3 Te4	Cesium Manganese Telluride	0.1751	0.9034	0.2091	I/Ic avail.	0.8261	
		* 01-074-0856	Ni Te2 O5	Nickel Tellurate	0.2095	0.8117	0.2679	I/Ic avail.	0.8260	-
	ntensit	v			2theta	Intensity	EWHM 0	1-071-3272		_
ANT	1000 -			Experimental patternum 001 (m 001 2 rmb)	4.38	33.5	0.5548			
***	950 -			Calculated pattern (Rp=19-0 %)	6.04	93.8	0.9000			
\mathcal{P}	200			[01-071-3272] Er (B O3) Erbium Borate	7.51	58.6	0.9000			R
2	900 -				9.22	24.8	0.1500	0.2		11
Θ	850 -				9.51	176.4	0.9000	0.2		11
-					11.41	68.8	0.9000			*
₩	800 -				12.01	69.2	0.3781			→
*	750 -		Searching/Matchingplea	se wait !	12.31	38.3	0.3404			[→]
+	700 -				12.60	213.2	0.2360	1.0		*
					13.31	66.6	0.5013			
*	650 -		Deut De 14 fair	Constitutes Environ	13.97	156.3	0.2998			
111	600 -			cel Candidate Entities:	14.40	81.7	0.6043	0.9		
×				2320	15.29			0.2		
1.10	550 -				16.13	240.4	0.5530	11.0		
	500 -				17.13	53.6	0.3068			
\wedge	450				17.38	47.7	0.2453			
A	450 -				17.71	117.6	0.8700	0.2		
J.L.	400 -				19.00	256.9	0.2725	2.7		
44	350 -				19.69	34.0	0.9000	3.7		
쓔					20.20	206.1	0.3000	36.6		
4	300 -				21.37	121.2	0.4343	0.2		
4.4	250 -				22.82	131.3	0.3020	1.4		
111	200				23.86	27.7	0.6862	0.2		
<u>ì ìi</u>	200 -				24.23	520.9	0.3214			
[2-2]	150 -				25.36	118.2	0.2165	0.2		
15	100 -				25.60	96.2	0.9000	0.7		
	100		ANTARE IN AN IN ENAILY IN THE OF A DECEMBER AND AN A DIAL AND A THE A CHIEF AND AND A DECEMBER AND A DECEMBER A		26.43			1.9		
	50 -	Bach . March	A MARTANA AND A MARTANA AND AND AND AND A DAY TA AND A THAT MADE	MININGELLAND AND A AN AREA INA.	27.59	303.7	0.2540	51.6		
	0 -	LANWINPEN	TILE THALE THEAT IN THE PARTICIPATION AND AND AND AND AND AND AND AND AND AN	THE FEATURE IN THE ALL WE AND A DRIVEN WITH A DRIVEN AND A	28.86	46.0	0.1728			
			normé concribio nem contre concrite contre contre contre contre de la mé		29.50	135.3	0.9000	0.9		
			<u>, na sena na s</u>		30.90			174.2		
		5.00 10.00	15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.0	0 65.00 70.00 75.00 80.00 85.00	30.90			174.2		
	Cu-Ka (1.541874 A)		2theta	32.35	142.2	0.4858	0.7		-1
174	699	PDF-2/Release 2005	RDB	Team I	EAT					
at St	tart	💾 🧾 🕑 »	💽 Антивирус avas 🕻 🐹 STOE WinXPO 🛛 😨 Gmail - Google 🗁 F:\хим	ифак 🛛 🔯 Microsoft Power 🗼 Match! -	mix		E	N « 🎭	KO 10	5:51

М.А.Порай-Кошиц, Основы структурного анализа химических соединений, М.: Высшая школа, 1982

Д.Ю.Пущаровский, Рентгенография минералов,М.: Геоинформмарк, 2000.

Т.В.Богдан, Основы рентгеновской дифрактометрии, М.: химфак МГУ, 2012.