Газогидратные исследования в университете Хериот-Ватт (Эдинбург)*

Б. Тохиди, Р. Андерсон, А. Масоуди, Дж. Арджамани, Р. Бургасс, Дж. Янг

БАХМАН ТОХИДИ (BAHMAN TOHIDI) — доктор, старший преподаватель Института нефтяных технологий университета Хериот-Ватт. Область научных интересов: исследование газовых гидратов (бурение и добыча, газовые гидраты в морских осадках, свойства пластовых флюидов).

РОСС АНДЕРСОН (ROSS ANDERSON) — младший научный сотрудник Института нефтяных технологий университета Хериот-Ватт. Область научных интересов: газовые гидраты в морских осадках.

АМИР МАСОУДИ (AMIR MASOUDI) — аспирант Института нефтяных технологий университета Хериот-Ватт. Область научных интересов: термодинамическое моделирование гидратных систем, включая процессы растворимости солей и стабильности гидратов в углеводородных системах, содержащих соли и органические ингибиторы.

ДЖАХАН АРДЖАМАНДИ (JAHAN ARIMANDI) — аспирант Института нефтяных технологий университета Хериот-Ватт. Область научных интересов: разработка и испытание кинетических ингибиторов гидратов для систем добычи и транспорта углеводородов на шельфе.

РОД БУРГАСС (ROD BURGASS) — младший научный сотрудник Института нефтяных технологий университета Хериот-Ватт. Область научных интересов: исследование режимов работы трубопроводов, включая технологические особенности (выпадение гидратов, парафинов и асфальтенов).

ДЖИНХЭЙ ЯНГ (JINHAI YANG) — младший научный сотрудник Института нефтяных технологий университета Хериот-Ватт. Область научных интересов: исследования гидратов в пористых средах, акустические свойства гидратосодержащих грунтов.

Centre for Gas Hydrate Research, Institute of Petroleum Engineering, Heriot-Watt University, Edinburgh, EH14 4AS, E-mail bahman.tohidi@pet.hw.ac.uk

Проводимая в университете Хериот-Ватт работа в области газовых гидратов охватывает широкий круг практически важных проблем — от решения вопросов и задач газопромысловой практики до изучения поведения газовых гидратов в природных условиях. Производимые исследования сосредоточены на измерении и прогнозировании кластерных и парафиновых равновесий в многофазных углеводородных системах, на разработке и испытании новых типов ингибиторов газовых гидратов, «работающих» при небольших их удельных расходах. Аспекты изучения газовых гидратов в природных условиях являются поведение кластерной фазы в пористых средах и акустические свойства гидратосодержащих грунтов.

В этой статье мы представляем обзор наших последних работ, а также некоторые ранее опубликованные результаты.

Новые экспериментальные установки и методы

Исследование газовых равновесий газовых гидратов проводится более 100 лет. В настоящее время актуальной задачей является создание углубленных и новых экспериментальных методов для изучения газовых гидратов, обеспечивающих высокую точность экспериментальных данных. К недостатками последних лет в этой области следует отметить технологию получения и разложения гидратов на поверхности кристалла квадра для определения условий диссоци-
ции кластров и применение стеклиных микроустановок для визуального наблюдения за поведением газовых гидратов на «микроскопическом уровне».

Метод исследования газов по методу паровых гидратов на поверхности кристалла каркаса

Для определения условий диссоциации гидратов предложен быстрый, точный, надежный и относительно недорогой метод [1]. Он основан на использовании чистого льда из ограниченного кристалла, закрепляемого между двумя электродами. При пропускании электрического тока через электроды кристалл гидрата начинает колебаться с резонансной частотой, при этом даже незначительное количество исследуемого вещества, находящегося на поверхности кристаллического льда, приводит к изменению этой частоты, которое легко измерить.

Определение условий диссоциации газовых гидратов этим методом осуществляется следующим образом. Небольшая капля воды помещается на поверхность кристаллического льда, установленного в барокамере высокого давления, содержащей гидратобразующий газ. При охлаждении системы на поверхности льда развивается процесс гидратообразования, что регистрируется по значительному сокращению резонансной частоты колебаний кристалла каркаса. По окончании процесса гидратообразования барокамера напрягается ступенчато (по методике [2]) с достижением частоты на каждой ступени (стабилизируется давление). Нагревание осуществляется до тех пор, пока температура в барокамере не превысит температуру конца разложения кластров. Температура, при которой произойдет полное разложение кластров, может быть достаточно точно определена по значительному дифференцируемому понижению резонансной частоты колебаний кристалла каркаса и/или его электропроводимости при резонансной частоте (рис. 1).

Сравнение результатов экспериментальных исследований тестируемых систем по этому методу с данными, полученными ранее общепринятым методом, [1] показовало отличную сходимость, что подтверждает надежность и эффективность разработанного метода. Его основное преимущество состоит в том, что, поскольку размеры исследуемого объекта очень малы, система достигает равновесных условий гораздо быстрее, чем в условиях больших объемов барокамеры. Другое преимущество малых размеров образца заключается в том, что метод с точностью и надежностью позволяет получать экспериментальные данные при высоких давлениях, когда как процессы в барокамерах больших объемов потенциально представляют опасность в работе.

Стеклиные модели прозрачных сред

Стеклиные микромодели широко используются при изучении флюидов в резервуарах для получения визуальной информации о поведении фазы в поровом пространстве. Новым экспериментальным направлением является изучение влияния на микромодели для изучения газовых гидратов в прозрачных средах. Результаты, полученные в наших работах [3, 4], демонстрируют эти возможности.

Микромодель выполнена в виде тарелки из травленого стекла с герметической стеклянной крышкой. Воспроизведение любых геометрических склонах порового пространства или тонких сечений реальных граничных условий может быть использовано для построения микромоделей путем травления поверхности стеклянной тарелки или плоской кромки стеклянной тарелки. Крышка имеет встроенные и встроенные датчики давления, что позволяет контролировать микромодели в поровом пространстве. Тарелка помещается в сосуд, в котором создается давление, сосуд устанавливается в камеру для контроля температуры. Температура измеряется плагионовым термометром сопротивления. На входной и выходной трубах размещены датчики для измерения давления. Для наблюдения за фазовым процессом микротрубы устанавливаются в микромодели пористой среды.

Лабораторное исследование газовых гидратов в трубопроводных системах

Трубопроводные исследования состоят из практики важной части газогидратной тематики. В задачах является определение и диаграмм газогидратных равновесий в соляных и смешанных соле-органических водных растворах, трубопроводах и испытании новых газогидратных ингибиторов, действующих в малых количествах, а также определение и диаграмм газо-водных равновесий и опробование антигидратных покрытий*.

Рис. 1. К определению температуры диссоциации газовых гидратов по резонансной частоте колебаний кристалла каркаса (2) и его электропроводимости (1) (для системы метан—вода)

* Вопросы исследования пашино-водных равновесий и разработка антигидратных покрытий здесь не рассматривались из-за ограниченного объема статьи.
Газогидратные равновесия в растворах электролитов и органических ингибиторов

Сведения о диссоциации газовых гидратов в присутствии различных электролитов и органических ингибиторов (и их комбинаций), используемых при бурении и добыче на шельфе, практически отсутствуют, а имеющиеся данные не вполне надежны. Между тем точные экспериментальные данные для таких систем необходимо, поскольку они позволяют находить эмпирические корреляции и разрабатывать термодинамические модели, нужные для точного прогноза зоны стабильности гидратов в многофазных углеводородных жилках системах. Нами проведен значительный объем экспериментальных работ с целью получения надежных данных по гидратным равновесиям в таких системах.

В рамках изучения газогидратных равновесий в водно-солевых системах были рассчитаны процессы диссоциации кластеров в растворах отдельных электролитов, в присутствии отдельных органических ингибиторов и в смешанных электролит-ингибиторных волнах растворах. При этом были использованы следующие электролиты: натрия, натрия, кальция, силикат натрия, хлорид кальция и карбонат кальция, а также водные растворы органических соединений: этиленгликоля, диэтиленгликоля, третиенигликоля, пропанола-2 и этанола. Смешанные соле-органические ингибиторные системы включали хлориды калия, натрия, кальция и этиленгликоля.

В результате экспериментальных исследований было установлено, что большинство ранее полученных данных по диссоциации гидратов в присутствии солей или органических ингибиторов не вполне точны. На рис. 2 представлены примеры экспериментальных данных и результатов моделирования процесса диссоциации гидратов метана в водных растворах этанола и этиленгликоля. Моделирование проводили с помощью нашей компьютерной программы НВНХУД (ее описание см. ниже). Получена хорошая сходимость результатов моделирования и наших экспериментальных данных (расчетные данные совершенно независимы, так как в моделировании не использовались параметры диссоциации, полученные экспериментальным путем). В то же время литературные данные сильно отличаются от наших расчетных и экспериментальных результатов. Остановимся на причинах подобных расхождений.

Погрешности измерений условий диссоциации гидратов во многих ранних работах обусловлены методическими недостатками. Так, точность визуальных исследований определяется способностью экспериментатора увидеть кристаллы гидрата независимо от того, насколько они малы и где они расположены. Так как при диссоциации объем кристаллов гидрата уменьшается, возможность их обнаружения и наблюдения за ними также снижается. Следовательно, возрастает вероятность погрешности. Другая и общая для всех экспериментальных методов исследований причина погрешности вызвана нестабильными условиями процесса. Нагревательные условия в системе могут приводить к разложению гидратов при температурах ниже или выше равновесных значений. Для изохорических методов исследования (объем барокамеры постоянен) основная причина нестабильности связана с тем, что используется способ непрерывного нагревания- охлаждения, а при непрерывном нагревании равновесные условия практически не достигаются, поскольку температура постоянно изменяется. Все данные, представленные в этой статье, получены по методике ступенчатого нагревания [2]. Как показано в [2], скорость нагревания очень важна при изучении условий диссоциации гидратов. При ступенчатом нагревании длительность каждой ступени достаточна для того, чтобы температура могла достигнуть равновесия (определяется по стабилизации давления). Из тепловой диссоциации температурных зависимостей параметров диссоциации берутся только равновесные значения, тем самым гарантируется точность измерений параметров диссоциации. Данные, полученные по методике ступенчатого нагревания, имеют хорошую воспроизводимость и поэтому более надежны по сравнению с результатами в случае непрерывного нагревания.

![Газогидратные равновесия](image-url)
Низкоэяируемые гидратные ингибиторы

Для предупреждения гидратообразования в промысловых трубопроводах обычно применяются методы дегидратации, изоляции, специальные полезные мето- ды, а также вводятся в транспортируемую систему различные термодинамические ингибиторы (например, метанол, гликоль или их комбинации). Для дости- жения необходимого эффекта ингибирования при глубоководных работах обычно используются термон- динамические ингибиторы используются в большинстве случаев (в частности, до 50 % масс. метанола в водной фазе). Это требует больших эксплуатационных затрат на предупреждение гидратообразования в про- мысловых условиях.

В настоящее время в нефтегазовой отрасли разра- батываются и испытываются альтернативные, так называемые низкоэяируемые гидратные ингибиторы (LDН-ингибиторы). По принципу действия их разде- ляют на кинетические ингибиторы и антивалометры. Кинетические ингибиторы замедляют образование зародышей и рост кристаллов гидратов. Антиваломе- тры предупреждают слияние кристаллов гидратов, в результате получается легко транспортируемая гидро- смесь (в этом случае гидратообразования на стенках труб и промысловых коммуникаций не происходит).

Некоторыми исследователями была сделана, на наш взгляд, пока не очень успешная попытка использо- вания одновременно обоих типов ингибиторов. ДН-ингибиторы могут применяться в низких кон- центрациях, обычно около 0,3-0,5 % масс. (по срав- нению с 10-50 % для обычных термодинамических ингибиторов.)

Низкоэяируемые ингибиторы активно исследо- вались в последнее десятилетие, однако требуется даль- нейшее серьезное изучение этих соединений, прежде чем можно будет решить, как они вписываются в практику. Здесь нам представляется важным принять во внимание для аспекта допустимую степень переохлаждения \(\Delta T \), т.е. насколько температура может быть ниже равновесной температуры гидратообразования без риска образова- ния гидратных пробок и воздействия этих ингибито- ров на окружающую среду.

Имеющиеся в настоящее время низкоэяируемые ингибиторы могут быть использованы только при \(\Delta T \) меньше 10-12 °C, тогда как в реальной практике воз- можных случаях переохлаждение составляет до 20 °C (например, в проекте «Глубокая взвесь» утверждена величина \(\Delta T = 17 °C \) как минимальное значение для подобных низкоэяируемых ингибиторов). Помимо этого, большинство наиболее активных ингибиторов не соответствует требованиям по токсичности, биокумуляции и биодеградации, в частности для условий Северного моря.

По указанным причинам возникла необходимость в разработке новых классов низкоэяируемых ингиби- торов. В настоящее время в Центре газохимических исс- каний университета Хрикот-Ватт ведется работа в рамках двух проектов, посвященных исследованиям низкоэяируемых ингибиторов: 1) создание и тестиро- вание низкоэяируемых ингибиторов (работа совмест- но с химическим факультетом университета Варвинк, Великобритания) и 2) микро- и макроисследования низкоэяируемых ингибиторов (объединенный про-}

мышленный проект, финансируемый рядом нефтяных компаний).

Разработанные нами экспериментальные методы визуального наблюдения в стеклянных установках высокого давления (41 МПа) применимы для изуче- ния процессов зародышеобразования и роста кристи- ллов гидратов в присутствии и в отсутствие LDН-ин- гибиторов. Подобные исследования проводятся также на установке высокого давления (до 700 бар) с тем, чтобы оценить повторяемость и масштабность данных, полученных на стеклянной микроструктуре. Для оценки влияния различных факторов на эффектив- ность работы LDН-ингибиторов изучаются разнооб- разные флюидные системы, включая тетраэтилдизеррин, метан, CO2, природный газ, газоконденсат и нефть.

В результате комбинированных микро- и объемных исследований мы ожидаем получить данные о меха- низме воздействия низкоэяируемых ингибиторов на гидратообразование, о времени индукции гидратов, скорости роста, релаксационных свойствах газовых гид- ратов, о влиянии ингибиторов на транспортировку газовых гидратов в флюиде (газообразном) потоке. В конечном итоге эти данные будут использоваться для усовершенствования принципов и методов изуче- ния низкоэяируемых ингибиторов в лаборатории и для разработки методов ингибирования в глубоковод- ных условиях.

Экспериментальные подходы для оценки низкоэяируемых ингибиторов

Для исследования и оценки LDН-ингибиторов применяются два основных подхода: изучение кинетики в объеме и визуальные наблюдения за поведени- ем фазы с помощью стеклянных микромоделей.

Объемные кинетические исследования предоставля- ют данные для оценки ингибиторов в различных моделируемых условиях трубопроводного транспорта, таких как стационарные и переходные процессы. Они обеспечивают макроскопическую информацию о дей- ствии ингибиторов, включая данные о времени ин- дукции гидратов, релаксации флюидов, транспортиру- емости и возможности образования гидратной пробки и блокировки потока.

В нашем университете для изучения низкоэяиру- емых ингибиторов используются два специально разработанные гидратные кинетические установки. Новым подходом для оценки LDН-ингибиторов яв- ляется применение стеклянных микроструктур, кото- рые позволяют визуально наблюдать за поведением гидратной фазы на микрозоне и получить важную информацию о влиянии ингибиторов на механизмы роста и морфология кристаллов гидрата.

Факторы, влияющие на действие низкоэяируемых ингибиторов

Как отмечалось выше, механизмы, по которым низкоэяируемые ингибиторы ограничивают рост и агломерацию кристаллов гидрата, комплексны и яв- ляются индивидуальными по отношению к некоторым соединениям и флюидным системам. С точки зрения эффективности использования ингиби- торов при добое углеводородов на шельфе можно выделить четыре основных фактора, влияющих на их действие: степень переохлаждения, структура гидра-
тов, концентрация ингибиторов и механизмы роста гидрата (из свободного или растворенного газа). В настоящее время нами проводится исследования роли всех этих четырех факторов.

Прогноз зоны стабильности гидратов

Одно из наиболее важных направлений газогидратных исследований в нашем университете — это разработка методов прогноза зоны стабильности гидратов резервуарных флюидов. Разработка таких методов включает создание компьютерной термодинамической модели HWYD (Heriot-Watt Hydrate), а также установление ряда дополнительных эмпирических корреляций.

Ниже представлены краткий обзор опубликованных корреляций и детализация последней модификации HWYD-модели, в которую учтены возможное выпадение твердой фазы — осадка солей в смешанном электролит-органическом ингибиторном растворе.

В работах Остреграда с соавт. [5, 6] предложены новые эмпирические корреляции для прогнозирования зоны стабильности гидратов природных газов в области как выше, так и ниже температуры замерзания водной фазы. Единственное начальное условие необходимо для определения корреляции — это давление лизосомации кластеров на температуре замерзания воды (т.е. при 273,15 К). Это величина легко может быть получена из экспериментальных данных или из корреляции, разработанной для природных газов, существующих выше температуры замерзания водной фазы. Новые корреляции могут быть использованы для оценки зоны стабильности гидратов в области криолитозоны, а также они могут служить в качестве нулевого приближения в более сложных компьютерных программах.

Рассмотрим особенности нашей компьютерной программы HWYD.

Одна из проблем, связанная с использованием метанола и/или гликоля в газонеотяженных системах с высоким содержанием солей в воде, — возможное выпадение осадка минеральных солей, что может привести к сбоям при проведении обработки газовых гидратов. При моделировании возможного явления нами был использован новый подход, который позволяет прогнозировать поведение фаз водных систем с учетом осаждения соли и растворимости газа в присутствии солевых и органических ингибиторов. В этом подходе соль рассматривается как певлекомпонент в уравнении состояния. В основе разработанной термодинамической модели лежит модификация Вальдера [7] уравнения состояния Пателы и Тена (1982) для расчета метательности всех флюидных фаз. В этом уравнении используются независимые от плотности выражения смешения в случае полимерно-неполимерных и неполимерно-неполимерных взаимодействий [8]. Так как молекулы соли и воды являются полярными, то для моделирования бинарных систем газ — электролит использовались асимметричные правила смешения.

Для моделирования гидратной фазы нами была выбрана традиционная модель кластерных растворов Ван-дер-Ваальса и Платтеу (1959), в модификации предложенной Кепелем и Гудвином (1990) с использованием потенциала Кихара для расчета взаимодействия включенных в кластерную ячейку молекул с молекулами воды. При моделировании водно-солевых взаимодействий оптимизированы критические свойства растворов и акцентрические факторы для индивидуальных электролитов. Результаты показывают, что этот подход обеспечивает надежный прогноз поведения фаз индивидуальных и смешанных водных электролитных систем.

Экспериментальные данные по фазовым равновесиям соли—соли—соли использовались для определения параметров бинарных взаимодействий вод—соли—соли. Эти данные включают понижение температуры замерзания и повышение температуры кипения однородных и смешанных электролитных водных растворов, а также растворимость соли в воде. Сопоставление расчетных и экспериментальных данных для системы NaCl — KCl — H₂O показало вполне приемлемые результаты.

Учитывая плацдарм молекул солей и неполярность пазов, асимметричные правила смешения мы использовали и для моделирования пазо-солевых взаимодействий.

Для моделирования сложных термодинамических систем, в которых существует гидратообразование, необходимо также данные о понижении температур замерзания, повышении температуры кипения и растворимости соли для смешанных соле-органических ингибиторных водных растворов. Поскольку на начало нашей работы имеющейся информации и экспериментальных данных о поведении фаз соли и органических ингибиторов было недостаточно, в нашей лаборатории были получены дополнительные экспериментальные данные для водных растворов, содержащих соли и/или органические ингибиторы. Эти данные, которые могут быть использованы при проектировании буровых растворов или при подготовке флюидов, а также для развития термодинамических моделей, включают информацию о понижении температуры замерзания, повышении температуры кипения и растворимости соли.

На основе имеющихся в литературе экспериментальных данных и наших результатов были оптимизированы параметры взаимодействия между солями и органическими ингибиторами. Оптимизированные параметры обеспечили отличное согласие результатов экспериментов и расчета.

Разработанная в университете Херрит-Ватт модель HWYD, помимо описания на ее основе газогидратных равновесий, может успешно применяться в следующих термодинамических расчетах:

— понижения давления пара над отдельными и смешанными электролитными растворами;
— понижения температуры замерзания водных электролитных растворов;
— растворимости газа в водных электролитных растворах;
— осаждения соли в смешанных электролитных растворах;
— эффектива подавления гидратообразования в индивидуальных и смешанных электролитных растворах, а также в смешанных солях и/и органических ингибиторных системах.

Сопоставление с экспериментальными данными свидетельствует о хорошем совпадении их с расчет-
Газовые гидраты в природных условиях.
Модельные исследования

В настоящее время хорошо известно, что в природных условиях газовые гидраты могут существовать в морских осадках континентальных окраин, в вонно-мерзлых отложениях арктических областей, в ледниках Антарктиды и Арктики. Природные гидраты метана представляют собой потенциальный источник энергии. Они имеют также важное долгосрочное значение для стабильности морских окраин. Выбросы метана могут влиять на глобальное изменение климата. Несмотря на распространенность и практическую и экологическую значимость этих естественных систем, их термодинамика изучена еще недостаточно.

Исследования в этой области, проводимые в университете Хернот-Ватт, направлены на изучение влияния свойств пород (размер пор, минералогия) на кластерные гидраты и обратного плавления, так как рост и разложение газовых гидратов могут менять свойства пород.

Акустические свойства гидратосодержащих пород

Акустические измерения являются основным источником информации, на основании которой проводится идентификация и количественная оценка местообитания гидратов в донных отложениях. В недалекой работе Токи и соавт. была представлена новая ультразвуковая установка, предназначенная для изучения акустических и геотехнических свойств гидратосодержащих пород в донных условиях. Она оснащена ультразвуковыми преобразователями и приемниками продольных и поперечных волн. Эта установка способна обнаруживать изменение времени пробега звуков в 0,01 мс через 0,5 м керна (т.е. акустическая скорость -0,5 м/с). Предварительные испытания с искусственными растворами тетрагидрофурана и системы метан—вода в поровой среде, состоящей из синтетических шариков (моделирующих грубый кварцевый песок), показали, что скорость распространения звука высокочувствительно к объемам фаз (гидрат, жидкость и газ) и их распределению. По измерению времени пробега звуков могут быть точно определены давление и температура диссоциации кластеров.

Исследования газовых гидратов в пористой среде

Микромодели пористых сред широко используются в лабораторных исследованиях, позволяя получать визуальную информацию о поведении фаз в пористых средах. Результаты работы Токи и соавт. [11, 12] показали потенциальные возможности использования микромоделей пористых сред для исследования проблем, имеющих особое важное практическое значение: образование газовых гидратов из растворенного газа и цементирующие свойства гидратов в пористой породе.

<table>
<thead>
<tr>
<th>Электролиты</th>
<th>Органические соединения</th>
<th>Смесь</th>
</tr>
</thead>
<tbody>
<tr>
<td>Хлорид натрия</td>
<td>Метанол</td>
<td>NaCl / ЭГ</td>
</tr>
<tr>
<td>Хлорид калия</td>
<td>Этиловый спирт</td>
<td>KCl / ЭГ</td>
</tr>
<tr>
<td>Хлорид кальция</td>
<td>Этилентиолентилентиол</td>
<td>CaCl2 / ЭГ</td>
</tr>
<tr>
<td>Хлорид натрия</td>
<td>Дигидроглицерин</td>
<td>NaCl/Глицерин</td>
</tr>
<tr>
<td>Хлорид натрия</td>
<td>Глицерин</td>
<td>NaCl/Метанол</td>
</tr>
<tr>
<td>Бромид калия</td>
<td>Пропанол-2</td>
<td></td>
</tr>
<tr>
<td>Фторид натрия</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сульфат натрия</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Фосфат натрия</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Фосфат калия</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Силикат натрия</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Бромид натрия</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Карбонат калия</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Формат натрия</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таблица
Механизмы образования газогидратов в породах

Согласно термодинамическим расчетам, растворимость газа в воде уменьшается в присутствии газовых гидратов. Это означает, что кластеры потенциально могут образовываться из растворенного газа в отсутствие фазы свободного газа. При моделировании кристаллизации гидрата из раствора принимается как первичный механизм образования гидрата в двухфазной системе вода—гидрат в зоне стабильности гидратов в морских осадках. Этот процесс мог бы объяснить присутствие газогидратов в верхних горизонтах осадочной толщи, особенно на тех участках, где по данным BSR (селективные отражения акустических волн, фиксирующие границу гидрат—свободный газ) нет признаков наличия свободного газа, хотя гидраты имелись в расселяном состоянии.

Очень низкая растворимость многих гидратообразующих газов в воде, особенно метана, придала некоторым авторам мысли о том, что образование зародышей газогидратов непосредственно из раствора маловероятно. Однако, процесс роста кристаллов гидратов из растворенного газа довольно трудоемок для воспроизведения в лаборатории. Наиболее надежный метод для повторения этого процесса — визуальные исследования в микроскопическом масштабе.

Микроскопические исследования, проведенные Токией с соавт. [10, 11], предложили визуальное доказательство роста кристаллогидратов непосредственно из раствора. Результаты этих и последующих исследований с использованием радио систем, включающих метан, CO2, смеси метана и CO2, а также природные газы, в определенной мере свидетельствуют о том, что рост кристаллов гидрата из растворенного газа — первичный механизм образования гидрата даже в тех системах, где присутствует свободный газ.

Рис. 4 показывает образование кристаллогидрата из смеси 95 % (моля) CH4 и 5 % CO2 в среде, где присутствуют пузырьки свободного газа. В этом эксперименте наблюдался одновременный рост кристаллогидратов из свободного и растворенного газа. В таких системах газовые пузырьки растопоряются одновременно с тем кристаллов гидрата из растворенного газа. Это вызывает диффузионные процессы, обеспечивающие рост газовых гидратов в подводных осадках.

Гидраты как кембрирующий агент в осадочных породах

Один из важных вопросов, связанных с наличием газовых гидратов в морских осадках, — возможность кембрирования ими частицы породы. Газовые гидраты рассматриваются по отношению к матрице осадка в двух аспектах: их влияние на акустические свойства и на прочность сцепления осадка. Для изучения этих вопросов важное значение имеет моделирование фаз газовых гидратов в порах осадков. В рамках такой модели можно проводить изучение оползней. В зависимости от того, как рассматривается гидратная фаза, прогнозы прочности сцепления осадка могут быть очень различными.

Принципиально возможны два механизма образования газового гидрата в поровой системе осадка (рис. 5). По первой схеме гидрат образуется на контакте зерен, которые являются самыми слабыми элементами структуры. В этом случае газогидрат заменяет матрицу осадка, подобно диагенетическому цементу. По второй схеме гидрат образуется в порах между контактами, он слабо влияет или не влияет совсем на сцепление частиц породы и приводит к уменьшению пористости осадка. В зависимости от принятого механизма, модельные прогнозы для

Рис. 4. Результаты визуального наблюдения одновременного роста кристаллогидратов из растворенного и свободного газа (смесь 95 % CH4 и 5 % CO2).
H — гидраты, оформленные из газа, L — жидкость, Gr — частицы породы (зерна).
На верхнем рисунке — трансформация газовых пузырьков в кластеры H с начальным сжатием формул пузырьков. На среднем рисунке — появление земного шва, означающего рост кристаллов газового гидрата из множества зародышей, когда образуется большое количество мелких кристаллов с высоким показателем преломления. На нижнем рисунке — кластеры агломерируются (возможно, минимизируя поверхность для объемного взаимодействия), и вся масса становится полупрозрачной. Светопропускаемость, скорее всего, является результатом включения жидкости в породе в местах дефектов в растущей кластерной структуре. Далее пузырьки газа растраиваются и исчезают, а рост кристаллогидратов из растворенного газа продолжается.

тирует матрицу осадка, подобно диагенетическому цементу. По второй схеме гидрат образуется в порах между контактами, он слабо влияет или не влияет совсем на сцепление частиц породы и приводит к уменьшению пористости осадка. В зависимости от принятого механизма, модельные прогнозы для
некоторые оценочные данные все же можно получить по визуальным наблюдениям. Поры с цементом на контактах зерен будут иметь более высокую проницаемость, чем с гидратами, включенными в поры (Экер и др., 1998). Результаты, полученные нами, свидетельствуют о том, что последние случай лучше всего описывает поведение газовых гидратов. Тот факт, что клатраты растут преимущественно в центрах пор, а не на стенках, означает, что они снижают пористость, закупоривая поры, и, consequently снижают проницаемость.

Капиллярные эффекты в клатратных равновесиях

Глубоководные гидросодержащие осадки представлены тонкозернистыми алевритами (изолями), илами и глинами часто с очень тонкими порами (Гривфитс и Джоши, 1989). Ранее предполагалось, что устойчивость клатратов в таких тонких порах уменьшается под действием капиллярного давления. Это дает объяснение различиям между рассчитанными и фактическими зонами стабильности газовых гидратов в морских осадках [15].

Температура образования и диссоциации гидратов в тонких порах снижается, что следует из повышения равновесного давления, вызванного сильной кризовой поверхности раздела жидкость—твердое тело. С ростом давления увеличиваются летучесть и химический потенциал компонентов. В свою очередь, это приводит к более высокому давлению фазовых переходов при заданной температуре или к более низкой температуре при любом заданном давлении по сравнению с процессами в свободном объеме.

Ряд авторов приводит экспериментальные данные по диссоциации клатратов, заключенных в средние поры. Однако сравнить и оценить эти данные не представляется возможным, поскольку, как показывают литературный обзор, мнения относительно используемых экспериментальных методов и интерпретации данных очень разнятся. В работе [13] мы обсуждаем имеющиеся в литературе мнения с целью выяснения и устранения противоречий. В этой статье рассматривается характеристика клатратных равновесий в поровом пространстве при средних порах (меропорах), которые лежат в основе анализа экспериментальных данных нашей собственной работы и других. Сделан вывод, что встречающиеся ошибки в литературных данных преимущественно связаны с используемыми методами (например, непрерывное нагревание вместо ступенчатого) и с интерпретацией результатов относительно распределения размера пор. Кроме того, обычно используют уравнение Гиббса—Темпсона (Кельвина), не соответствующее установленным интерэкспериментальным условиям при расчете поверхностного напряжения или разработке термохимических моделей для описания фазового равновесия.

В наших работах [13, 14] описаны условия диссоцииации гидратов метана, углекислого газа и смеси \(\text{CH}_4 + \text{CO}_2 \) в трех модельных пористых средах (ситничные пористые образцы с радиусом пор 4,6; 7,9 и 15,3 нм) при давлениях до 20 МПа.

На рис. 6 приведены экспериментальные температурные зависимости давления диссоцииации гидратов в
системах метан—вода и углеводородный газ—вода моделирование пористой среды в сравнении с литературными данными для условий свободного объема.

В работе [15] предложено использовать уравнение Гиббса—Томпсона (Кельвина), модифицированное с учетом гистерезиса условий диссоциации, для обработки экспериментальных данных. Были получены значения поверхностного натяжения γ при $p = 32$ (±2) МПа и $V = 30$ (±2) МДж/м2 для гидратов метана структуры I и гидратов углеводородного газа, соответственно. Эти значения близки к расчетным значениям свободной энергии на поверхности раздела фаз водно—лиция (32 МДж/м2), а также к приведенным в литературе, определенным различными способами (в среднем 32 МДж/м2).

Как обсуждалось в работах [13, 14], существует заметный гистерезис между условиями образования и условиями диссоциации гидратов в узких капилярах из-за различий в кривизне поверхности раздела фаз жидкость—гидрат. Гистерезис проявляется в большинстве температур образования гидратов в поровом пространстве, чем при диссоциации. Это означает, что хотя газоные гидраты могут быть термодинамически устойчивыми, формирование их в порах фактически невозможно. Это положение имеет важное значение для понимания поведения гидрата в пористых средах и поэтому стало предметом наших дальнейших исследований.

Рис. 7 иллюстрирует кривизну поверхности раздела при образовании и диссоциации гидратов в узких капилярах и последующее влияние давления гидрата на поверхностное натяжение (уравнение Гиббса—Томпсона). В случае цилиндрической поры поверхность раздела воды—твердое тело рассматривается как полусфера, которая описывается зависимостью r_1 и r_2 со сферой кривизной $2/r_2$. При диссоциации радиус r_1 остается постоянным, r_2 становится бесконечным ($1/r_2 \to 0$), а полная кривизна составляет $1/r$.

Как указано выше, вследствие различной кривизны поверхности раздела фаз понижение температуры образования гидрата больше, чем температуры диссоциации. Пример этого гистерезиса показан на рис. 8 для системы метан—вода. Данные были получены для водонасыщенной системы (объем жидкости превышает объем порового пространства) с использованием установки высокого давления для пористых сред. Равновесные кривые на рис. 8 отчетливо показывают гистерезис между образованием (цикл охлаждения) и диссоциацией (цикл нагревания) газовых гидратов (следует отметить, что гистерезис не может быть приписан переохлаждению при зарождении образования, поскольку газовые гидраты уже имеются в системе вне
Гидраты воздуха в ледниках

Как известно, в условиях низких температур и высоких давлений в глубоких слоях ледников Арктики и Антарктиды формируются гидраты воздуха. Исследование этих гидратов имеет важное значение, так как они могут дать информацию об изменении состава земной атмосферы в ледниковые и межледниковые периоды, расширить и уточнить наше понимание глобального изменения климата. Кроме того, важный научный интерес представляет то обстоятельство, что газы ледниковых гидратов могут обеспечивать жизнедеятельность простейших организмов в подледниковых озерах, таких как озеро Восток в Антарктиде [16].

Имеющиеся в литературе экспериментальные данные о гидратах воздуха очень ограничены (см. обзор [17]). В работе [18] мы представили новые экспериментальные данные по диссоциации гидратов метана, азота, кислорода и воздуха (79% мол. азота, 21% мол. кислорода). Экспериментальные данные были получены с использованием метода исследования гидратов на кристаллах кварца, описанного выше (соответственно кислород был включен в нашу модифицированную программу для описания гидратных равновесий воздуха). Данные по диссоциации гидратов кислорода использовались для оптимизации параметров Кихара. На основе этих параметров для кислорода и ранее опубликованных параметров Кихара для азота была разработана модель, позволяющая прогнозировать условия диссоциации воздушных гидратов, их фазовый состав (гидрат, жидкость и газ), растворимость газа в воде. Оказалось, что модель можно успешно применять для независимых (т.е. не использованных в оптимизированном процессе) экспериментальных данных [18]. Рис. 9 показывает хорошее согласование результатов моделирования и экспериментальных данных, что подтверждает належность экспериментальных и расчетного методов.

Литература