Российский химико-технологический университет имени Д. И. Менделеева. Высший химический колледж

КАТАЛИЗИРУЕМОЕ КОМПЛЕКСАМИ ПАЛЛАДИЯ, ПЛАТИНЫ И НИКЕЛЯ ГИДРОСЕЛЕНИРОВАНИЕ АЛКИНОВ

Автор: студент 1 курса *Малышев Д. А.* Научный руководитель: *д.х.н. Анаников В. П.*

СОДЕРЖАНИЕ

1. Введение	3				
2. Присоединение PhSeH к алкинам в	5				
присутствии Pd(PPh ₃) ₄ и Pt(PPh ₃) ₄					
3. Изучение механизмов реакции					
1. Разработка новых катализаторов реакции					
присоединения фенилселенола к алкинам					
5. Выводы	12				
б. Экспериментальная часть					
7. Публикации по работе					
3. Список литературы					
9. Благодарность	15				

введение

Катализируемые комплексами переходных металлов реакции присоединения веществ со связями Е-Е и Е-Н (Е = В, Si, S, Se и др.) к алкинам является мощным инструментом современного органического синтеза^{1,2,3}. Такие реакции позволяют вводить элементсодержащие функциональные группы в органические соединения в мягких условиях с высокой эффективностью. Продукты присоединения RSeH и RSe-SeR к алкинам – винилселениды – находят всё большее применение как в органическом синтезе^{4,5,6}, так и в материаловедении^{7,8}.

Тем не менее, механизмы каталитических процессов недостаточно хорошо исследованы. В литературе большое внимание уделено реакциям присоединения тиолов $(RSH)^{2,9,10,11}$ и дисульфидов $(RSSR)^{12,13}$ к алкинам. На этом фоне аналогичное присоединение диселенидов $(RSeSeR)^{13,14}$ и селенолов $(RSeH)^{15}$ исследовано в значительно меньшей степени. Наиболее активными катализаторами реакций присоединения оказались комплексы палладия, платины и родия. Направление и выходы в каждом конкретном случае сильно зависят от строения катализатора²⁻¹⁵.

Нашей задачей было изучить присоединение PhSeH к тройной связи алкинов и исследовать механизм данного процесса. Необходимо было понять, как природа металла и строение катализаторов реакций присоединения определяет выход и направление процесса, а также выяснить механизм реакции и научиться предсказывать каталитическую активность того или иного соединения.

Ранее было показано, что $Pd(OAc)_2$ может выступать в качестве катализатора реакций присоединения фенилтиола^{2,9,10,11} и фенилселенола¹⁵ к тройной связи алкинов. В результате данной региоселективной реакции образовывался продукт в соответствии с правилом Марковникова (схема 1). В реакциях некаталитического присоединения, протекающих по свободно-радикальным или нуклеофильным механизмам, наблюдается образование продукта против правила Марковникова с низкой селективностью (схема 2)^{16,17}.

Недавние исследования в нашей научной группе по присоединению Ph_2S_2 и Ph_2Se_2 показали существенное различие в каталитической активности $Pt(PPh_3)_4$ и $Pd(PPh_3)_4^{14}$. Было выяснено, что фосфиновые комплексы палладия склонны к образованию димеров, в то время как фосфиновые комплексы платины преимущественно мономерны, а активным интермедиатом может служить лишь нестабильный *цис*-изомер **5** (схема 3):

ПРИСОЕДИНЕНИЕ PhSeH K АЛКИНАМ В ПРИСУТСТВИИ $Pd(PPh_3)_4$ И $Pt(PPh_3)_4$

Реакция присоединения PhSeH к алкинам с различными заместителями была проведена в присутствии Pd(PPh₃)₄, Pt(PPh₃)₄, а также в отсутствии катализатора (схема 4).

Результаты и выходы продуктов присоединения представлены в таблице 1.

<u>Таблица 1.</u> Выходы* (%) реакций каталитического и некаталитического присоединения PhSeH к алкинам.

№	Алкин	Pd(PPh ₃) ₄	Pt(PPh ₃) ₄	Без катализатора
		8 :9 :10:11	8 :9:10:11	8:9:10:11
1	7-A	20:36:0:0	60:0:0:0	0:0:0:0
2	7-B	49:25:0:0	60:0:0:0	0:0:0:0
3	7-C	42:42:0:0	55:0:0:0	0:0:0:0
4	7-D	40:40:0:0	51:0:0:0	0:0:0:0
5	7-E	19:0:19:62	21:0:13:62	0:0:17:63
6	7-F	0 : 15 : 18 : 67	0 : 3 : 10 : 70	0:0:7:73

*Выходы рассчитаны относительно фенилселенола.

Как видно из полученных результатов, без катализатора фенилселенол реагирует только с алкинами, в которых тройная связь сопряжена с фенильным кольцом (R = Ph) или карбоксиметильной группой (R=COOMe).

Некаталитическое присоединение протекает скорее всего по нуклеофильному механизму (преимущественно образуется продукт транс-присоединения), и скорость

некаталитической реакции превышает скорость каталитической, поэтому продукты 8-Е и 8-F образуются с низкими выходами.

Следует отметить, что в случае $Pd(PPh_3)_4$ образуется продукт 9, который формально отвечает присоединению Ph_2Se_2 к алкину.

В случае катализа комплексом Pt(PPh₃)₄ реакция протекает региоселективно, и продукт **9** не образуется. В ходе реакции получаются продукт **8** и Ph₂Se₂ (выход 20-25%), который может быть легко отделен от винилселенида **8** быстрой флэш хроматографией^{19,20}.

Проведен поиск оптимальных условий протекания реакции. При варьировании температуры было обнаружено, что при температурах ниже 50 °C реакция не идет, максимальные выходы могут быть достигнуты при 80 °C, а при повышении температуры до 100 °C выходы падают за счет образования побочных продуктов.

Варьирование растворителей показало, что реакция идет только в неполярных растворителях (бензол, толуол), использование хлороформа ведет к снижению выходов, а в ацетонитриле и тетрагидрофуране продукт 8 не образуется. В полярном растворителе (EtOH) протекает только реакция некаталитического присоединения.

Сравнивая Pt(PPh₃)₄ и Pd(PPh₃)₄, можно сказать, что использование платиновых комплексов более перспективно с синтетической точки зрения, поскольку винилселениды **8** образуются с большими выходами. Упрощается процедура выделения целевых продуктов, кроме того, реакция присоединения, катализируемая платиновыми комплексами, нечувствительна к примесям Ph₂Se₂ в PhSeH.

Все продукты **8** были очищены методом флэш хроматографии^{19,20}, их строение подтверждено элементным анализом, данными масс-спектрометрии и ЯМР-спектроскопии на ядрах ¹H, ¹³C, ⁷⁷Se. Для соединения **8-C**•H₂C₂O₄ был выполнен рентгеноструктурный анализ (рисунок 1). Это первый пример рентгеноструктурного анализа для соединения, содержащего структурный фрагмент H₂C=C-Se-.

<u>Рисунок 1.</u> Молекулярная структура $H_2C=C(SePh)CH_2N^+HMe_2 \cdot HC_2O_4^-$.

ИЗУЧЕНИЕ МЕХАНИЗМОВ РЕАКЦИИ

Для изучения механизма реакции был приготовлен образец, содержащий Pd(PPh₃)₄ и PhSeH в растворе бензола-d6. ³¹P{¹H} ЯМР спектры показали присутствие в растворе двух комплексов с δ = 28.2 ppm и 26.8 ppm в соотношении 3 : 1, отвечающие *транс*- и *цис*-изомеру биядерного комплекса **2**, **3**¹⁴.

Таким образом, в случае присоединения PhSeH в алкинам в реакционной смеси образуется тот же самый интермедиат, что и в случае каталитического присоединения Ph_2Se_2 . Поскольку ранее было показано, что комплексы **2,3** являются катализаторами присоединения дифенилдиселенида к алкинам¹⁴, то данный результат объясняет образование продукта **9** в каталитической системе.

При добавлении Pd(PPh₃)₄ к раствору фенилселенола в дейтеробензоле наблюдается быстрое изменение окраски раствора (с бесцветной на темно-коричневую) и выделение газа. В ¹Н ЯМР спектре появляется сигнал с δ =4.5 ppm, что отвечает сигналу молекулярного водорода (рисунок 2.А). После продувания аргоном этот сигнал исчезает (рисунок 2.В). Для независимого доказательства раствор бензола–d6 продули водородом и в тех же условиях зарегистрировали ¹Н ЯМР-спектр (рисунок 2.С). Зарегистрированный химический сдвиг H₂ сходится с литературными данным¹⁸.

<u>Рисунок 2</u>. *А*: Спектр реакционной смеси. *В*: Спектр реакционной смеси после продувания Ar. *С*: Раствор H₂ в C₆D₆.

Для дальнейшего исследования механизма было осуществлено взаимодействие комплексов 2 и 3 с алкином в присутствии кислоты. Оказалось, что в результате данного процесса образуется смесь продуктов 8 и 9 с выходами 31 и 15% соответственно. Аналогичная реакция, проведенная в отсутствии кислоты, привела только к образованию продукта 9 с 50 % выходом (схема 5).

Данный результат говорит о том, что продукт 8 может образовываться в результате взаимодействия комплекса 14 с кислотой.

На основании полученных нами данных мы предлагаем следующий механизм каталитического процесса (схема 6):

Согласно предложенному нами механизму комплекс палладия претерпевает окислительное присоединение фенилселенола и превращается в гидридный комплекс 12. Далее возможно либо внедрение алкина по связи Pd-Se с образованием комплекса 13, либо взаимодействие с еще одной молекулой фенилселенола, приводящее к выделению водорода и образованию биядерных комплексов 2, 3. Комплекс 13 претерпевает восстановительное элиминирование, при этом образуется продукт 8, и первый цикл замыкается. Комплексы 2 и 3 переходят в комплекс 14 после внедрения молекулы алкина по связи Pd-Se, который

претерпевает восстановительное элиминирование или подвергается атаке внешним протоном, переходя обратно в биядерные комплексы **2**, **3**. В первом случае образуется продукт **9**, во втором – продукт **8**.

Как было показано ранее, комплекс платины $Pt(PPh_3)_4$ оказывается неактивным в реакциях присоединения дифенилдиселенида к алкинам вследствие неустойчивости каталитически активной формы – *цис*-изомера **5**¹⁴. В то же время, нами было обнаружено, что $Pt(PPh_3)_4$ проявляет каталитическую активность в реакциях присоединения фенилселенола к алкинам, причем реакция протекает региоселективно (продукта **9** не наблюдается).

Ключевой интермедиат окислительного присоединения PhSeH к $Pt(PPh_3)_4$ был зафиксирован методом ¹Н ЯМР спектроскопии (15, схема 7). В растворе бензола-d6 ему отвечает синглет (δ = -8.77 ppm) с характерными селеновыми и платиновыми саттелитами (J_{Pt-H} =999.8 Гц, J_{Se-H} =44.1 Гц), что подтверждает наличие атома водорода, связанного с Pt (Рисунок 3).

<u>Рисунок 3.</u> ¹Н ЯМР спектр гидридного комплекса Pt(H)(SePh)(PPh₃)₂.

Как и в случае палладия был проведен ЯМР-мониторинг реакции $Pt(PPh_3)_4$ и PhSeH в растворе бензола-d6. На ³¹P{¹H} ЯМР-спектрах присутствуют сигналы δ = 20.8 ppm с ¹⁹⁵Pt саттелитами J(Pt-P)=2842 Гц, и δ =18.5 ppm с ¹⁹⁵Pt саттелитами J(Pt-P)=2966 Гц, соответствующие *трасн*-[Pt(SePh)₂(PPh₃)₂] (6) и *цис*-[Pt(SePh)₂(PPh₃)₂] (5).

Для фосфиновых комплексов платины мы предлагаем следующий механизм (схема 7):

После стадии окислительного присоединения фенилселенола к $Pt(PPh_3)_4$ возможно внедрение алкина по связи Pt-Se с последующим образованием комплекса 16, который претерпевает восстановительное элиминирование с образованием продукта 8. Гидридный комплекс 15 также может присоединить ещё одну молекулу PhSeH с образованием диселенидных комплексов 5 и 6. Эти комплексы находятся в равновесии с $Pt^0(PPh_3)_2$, причем *цис*-изомер комплекса 5 быстро переходит в более стабильный *транс*-изомер 6.

При проведении реакции взаимодействия комплексов **5** и **6** с алкином в присутствии кислоты в реакционной смеси продукт **8** был обнаружен в следовых количествах (выход около 0.5%). Данный результат исключает возможность образования винилселенида **8** как продукта взаимодействия комплексов **5**,**6** с кислотой.

НОВЫЕ КАТАЛИЗАТОРЫ РЕАКЦИИ ПРИСОЕДИНЕНИЯ ФЕНИЛСЕЛЕНОЛА К АЛКИНАМ

На основании данных о механизмах реакций присоединения фенилселенола к алкинам, в которых катализаторами выступают [Pt⁰] и [Pd⁰], нами был предложен новый подход к синтезу диселенидных комплексов типа **2,3**.

Комплексы **2,3** могут образовываться в реакции каталитического присоединения фенилселенола к алкинам в результате присоединения двух молекул PhSeH к молекуле $Pd(PPh_3)_4$ (схема 8, *путь 1*). Другой метод синтеза заключается в окислительном присоединении PhSe-SePh к $[Pd^0]^{14}$ (схема 8, *путь 2*). В данной работе был предложен новый подход – нуклеофильное замещение при атоме металла (схема 8, *путь 3*).

<u>Схема 8</u>. Способы получения диселенидных комплексов 2,3.

В качестве катализатора был выбран хлорид никеля (II). При добавлении триэтиламина NiCl₂ переходит в раствор. Как было показано, образующийся при этом комплекс [Ni^{II}] является катализатором присоединения фенилселенола и тиофенола к алкинам. Получаются соответствующие винилселениды и винилсульфиды с выходами 50-60% (схема 9):

Схема 9.

По аналогии с палладиевыми и платиновыми комплексами мы предлагаем следующий механизм реакции, катализируемой комплексами никеля (схема 10):

Увеличение температуры реакционной смеси до 120 °С в случае использования комплексов никеля позволяет значительно (примерно в 10 раз) сократить время реакции, при

этом направление и выход реакции практически не изменяются. Интересно отметить, что фосфиновые комплексы палладия и платины чувствительны к температуре, и при нагревании выше 100 °C выходы реакции присоединения значительно падают.

выводы

В ходе проведённых исследований была изучена катализируемая комплексами Pd(PPh₃)₄ и Pt(PPh₃)₄ реакция регио- и стереоселективного присоединения PhSeH к алкинам.

Изучение механизмов каталитических процессов было проведено с помощью двумерных методик ЯМР-спектроскопии на ядрах ¹H, ³¹P, ⁷⁷Se, установлены причины различной каталитической активности комплексов платины и палладия.

Был предложен новый подход к генерированию *in situ* активной формы комплексов никеля и разработана каталитическая система, позволяющая проводить присоединение фенилтиолов и фенилселенолов к различным алкинам с высокой селективностью.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Наблюдение сигнала молекулярного водорода. В атмосфере аргона PhSeH (15.7 мг, $1.0 \cdot 10^{-4}$ моль) растворили в 0.5 мл бензола-d₆ при комнатной температуре. Добавление Pd(PPh₃)₄ (57.8 мг, $5.0 \cdot 10^{-5}$ моль) к раствору приводило к изменению его бесцветной окраски до черной. Выделение газа наблюдалось в течение 10-15 мин. Эксперимент проводили в ЯМР ампуле. В ¹Н ЯМР спектре зарегистрировали сигнал H₂ δ =4.5 м.д., исчезающий после продувания аргоном. Аутентичный образец был приготовлен продуванием водорода из баллона через бензол-d₆ в течение 10 мин. Сигнал при δ =4.5 м.д. был единственным новым пиком зарегистрированным в спектре. Литературные данные¹⁸: δ =4.5 м.д. для водорода, растворенного в толуоле-d₈.

Наблюдение сигнала комплекса [Pt(H)(SePh)(PPh₃)₂]. В атмосфере аргона PhSeH (7.9 мг, $5.0 \cdot 10^{-5}$ моль) растворили в 0.5 мл бензола-d₆ при комнатной температуре. Добавление Pt(PPh₃)₄ (62.2 мг, $5.0 \cdot 10^{-5}$ моль) к раствору приводило к изменению его бесцветной окраски до оранжевой. ¹Н ЯМР мониторинг зафиксировал появление сигнала гидридного протона (δ = -8.77 м.д., J_{Pt-H}=999.8 Гц, J_{Se-H}=44.1 Гц), интенсивность которого уменьшалась с течением времени вплоть до полного исчезновения через несколько часов.

Перехват о-винильного интермедиата кислотой (M=Pt, Pd). В атмосфере аргона Ph_2Se_2 (9.4 мг, $3.0\cdot10^{-5}$ моль) и M(PPh_3)₄ ($2.0\cdot10^{-5}$ моль) растворили в 0.5 мл бензола-d₆ и раствор нагревали при 80° С в течение 15 мин. Образование продуктов окислительного

присоединения дифенилдиселенида к комплексам металлов фиксировали с помощью ${}^{31}P{}^{1}H{}$ ЯМР спектроскопии. К полученному раствору добавляли алкин HC=CCH₂CH₂OH (2.8 мг, 4.0·10⁻⁵ моль) и кислоту CF₃COOH (4.6 мг, 4.0·10⁻⁵ моль), после чего нагревали при 80°C.

Общий синтетический метод присоединения PhSeH к алкинам. В атмосфере аргона PhSeH (1.0·10⁻³ моль) растворили в 0.5 мл толуола при комнатной температуре. Добавление М(PPh₃)₄ (3.0·10⁻⁵ моль) к раствору приводило к изменению его бесцветной окраски до черной (M=Pd) либо оранжевой (M=Pt). К полученному раствору добавляли алкин (1.5·10⁻³ моль) и выдерживали при 80°С. Реакцию проводили в запаянной ампуле. По окончании реакции растворитель упаривали на роторном испарителе и экстрагировали продукт 2 мл хлороформа.

Выделение и очистка продуктов. После проведения каталитической реакции растворитель упаривали на роторном испарителе. Продукты реакции очищали по стандартной методике хроматографией на колонке либо с помощью флэш хроматографии^{19,20} на сухой колонке. После проведения хроматографического разделения растворитель упаривали и продукт сушили в вакууме. Все продукты представляют собой бесцветное масло, кроме белой кристаллической соли **8-С·НООС-СООН**.

Для анализа сигналов ¹Н спектра использовалась двумерная ЯМР методика LR-COSY, а для анализа ¹³С спектров двумерные методики ¹H-¹³C HMQC и ¹H-¹³C HMBC. Химические сдвиги ⁷⁷Se определены с помощью ЯМР эксперимента ¹H-⁷⁷Se HMQC.

 $H_2C=C(SePh)-CH_2-NMe_2$ ·НООС-СООН (8-С·НООС-СООН). После завершения каталитической реакции растворитель и непрореагировавший алкин упаривали на роторном испарителе и экстрагировали продукт 3 мл толуола. К экстракту добавляли раствор НООС-СООН (135 мг, $1.5 \cdot 10^{-3}$ моль) в 2 мл тетрагидрофурана. Образовавшийся белый кристаллический осадок промывали толуолом, тетрагидрофураном и экстрагировали продукт 4 мл метанола. После сушки в вакууме получено 165 мг белого кристаллического продукта, выход 50% в расчете на исходный фенилселенол.

¹H (CD₃OD; δ, м.д.;): 7.60 (м, 2H, Ph), 7.40 (м, 3H, Ph), 6.07 (уш.с., 1H, HC=), 5.59 (с, 1H, HC=), 3.92 (уш.с., 2H, CH₂), 2.89 (с, 6H, CH₃). ¹³C{¹H} (CD₃OD; δ, м.д.): 165.9, 136.1, 133.1, 131.1, 130.2, 128.2, 127.9, 63.2, 43.4. Найдено, %: С 47.20; H 5.15; N 4.04; Se 23.99. С₁₃H₁₇NO₄Se Вычислено, %: С 47.28; H 5.19; N 4.24; Se 23.91. MC (ЭИ), m/e 241 (M⁺-HC₂O₄).

H₂**C=C(SePh)-CH**₂**OH (8-A).** ¹H (CDCl₃; δ, м.д.): 7.55 (м, 2H, Ph), 7.30 (м, 3H, Ph), 5.89 (уш.с., 1H, HC=), 5.44 (с, 1H, HC=), 4.19 (уш.с., 2H, -CH₂-). ¹³C{¹H} (CDCl₃; δ, м.д.): 152.8,

13

141.4, 133.9, 129.3, 127.8, 118.4, 66.4. ⁷⁷Se (CDCl₃; δ, м.д.): 385.6. Найдено, %: С 50.96; Н 4.67; Se 36.67. С₉H₁₀OSe Вычислено, %: С 50.72; Н 4.73; Se 37.05. MC (ЭИ), m/e 214 (M⁺).

H₂**C**=**C**(**SePh**)-^α**CH**₂-^β**CH**₂-^γ**CH**₂-^δ**CH**₃ (8-B). ¹H (CDCl₃; δ, м.д.; J, Hz): 7.56 (м, 2H, Ph), 7.30 (м, 3H, Ph), 5.50 (уш.с., 1H, HC=), 5.12 (с, 1H, HC=), 2.30 (уш.т., 2H, J=7.4, -^αCH₂-), 1.53 (тт, 2H, J₁=7.4, J₂=7.5, -^βCH₂-), 1.32 (тк, 2H, J₁=7.5, J₂=7.4, -^γCH₂-), 0.90 (т, 3H, J=7.4, -^δCH₃). ⁷⁷Se (CDCl₃; δ, м.д.): 423.5. MC (ЭИ), m/e 240 (M⁺).

H₂**C=C(SePh)-C**₆**H**₁₀(**OH)** (8-**D).** ¹H (CDCl₃; δ, м.д.): 7.58 (м, 2H, Ph), 7.30 (м, 3H, Ph), 5.76 (s, 1H, HC=), 5.00 (c, 1H, HC=), 1.85-1.55 (м, 9H, -C₆H₁₀-), 1.24 (м, 1H, -C₆H₁₀-). ¹³C{¹H} (CDCl₃; δ, м.д.): 153.9, 141.6, 135.0, 129.3, 127.9, 114.3, 75.1, 37.1, 25.5, 22.0. ⁷⁷Se (CDCl₃; δ, м.д.): 376.2. Найдено, %: C 59.56; H 6.01; Se, 28.37. C₁₄H₈OSe Вычислено, %: C 59.79; H 5.69; Se 28.07. MC (ЭИ), m/e 282 (M⁺).

Полную информацию по методике эксперимента и рентгеноструктурному анализу см. публикацию І.

ПУБЛИКАЦИИ ПО РАБОТЕ

- I. Ananikov V.P., Malyshev D. A., Beletskaya I.P., Aleksandrov G.G., Eremenko I.L., J.Organomet.Chem., 2003, 679, 162-172.
- II. В. П. Анаников, Д. А. Малышев, И. П. Белецкая, ЖОрХ, 38(10) (2002) 1528-1531
- III. В. П. Анаников, Д. А. Малышев, И. П. Белецкая, Новости ЯМР в письмах, 1-2 (2002) 1259-1262
- IV. Анаников В.П., Малышев Д.А., Кабешов М.А., Белецкая И.П., "Катализируемая комплексами переходных металлов активация связей Е-Е и Е-Н (E=S, Se, Te) в реакциях присоединения к алкинам" XVII Менделеевский съезд по общей и прикладной химии, 21-26 сентября 2003 г., Казань. Тез. докл. том. 1, с.83.
- V. Ananikov V.P., Kabeshov M.A., Malyshev D.A., Beletskaya I.P., "Transition metal catalyzed element-element and element-hydrogen bonds addition to alkynes" // Modern Trends in Organometallic and Catalytic Chemistry, May 18-23, **2003**, Moscow. Book of Abstracts, p.94.

СПИСОК ЛИТЕРАТУРЫ

- 1. I.P. Beletskaya, C. Moberg, Chem.Rev. 99 (1999) 3435-3461.
- 2. T. Kondo, T. Mitsudo, Chem.Rev. 100 (2000) 3205-3220.
- 3. A. Ogawa, J.Organomet.Chem. 611 (2000) 463-474.
- 4. T. Wirth (Ed), Organoselenium Chemistry: Modern Developments in Organic Synthesis; Springer Verlag: Berlin, New York, 2000.
- 5. T.G. Back (Ed), Organoselenium Chemistry : A Practical Approach; Oxford University Press: New York, 1999.
- 6. J. V. Comasseto, J. Organomet. Chem, 253 (1983) 131-181.
- 7. P.I. Clemenson, Coord.Chem.Rev. 190 (1990) 171-203.
- 8. C. Lauterbach, J. Fabian, Eur.J.Inorg.Chem. (1999) 1995-2004 (and references therein).
- H. Kuniyasu, A. Ogawa, K.-I. Sato, I. Ryu, N. Kambe, N. Sonoda, J.Am.Chem.Soc. 114 (1992) 5902-5903.
- 10. J.E. Bäckvall, A. Ericsson, J.Org.Chem. 59 (1994) 5850-5851.
- 11. A. Ogawa, T. Ikeda, K. Kimura, T. Hirao, J.Am.Chem.Soc. 121 (1999) 5108-5114.
- 12. Ananikov V.P., Kabeshov M.A., Beletskaya I.P., Aleksandrov G.G., Eremenko I.L., J.Organomet.Chem., 2003, 687, 451-461.
- 13. H. Kuniyasu, A. Ogawa, S.-I. Miyazaki, I. Ryu, N. Kambe, N. Sonoda, J.Am.Chem.Soc. 113 (1991) 9796-9803.
- 14. V.P. Ananikov, I.P. Beletskaya, G.G. Aleksandrov, I.L. Eremenko, Organometallics, 22 (2003) 1414-1421.
- 15. H. Kuniyasu, A. Ogawa, K.-I. Sato, I. Ryu, N. Sonoda, Tetrahedron Lett. 38 (1992) 5525-5528.
- 16. Дерягина Э.Н., Воронков М. Г., Корчевин Н. А., Усп. хим. 62 (1993) 1173-1183.
- 17. Griesbaum k. Angew. Chem., Int. Ed. 9 (1970) 273-287.
- 18. M. Jang, S.B. Duckett, R. Eisenberg, Organometallics 15 (1996) 2863-2865.
- 19. D. S. Pedersen, C. Rosenbohm, Synthesis 16 (2001) 2431-2434.
- 20. A. O'Nell, Synlett 9 (1991) 661-662.

БЛАГОДАРНОСТЬ

Выражаю глубокую благодарность своему научному руководителю д.х.н. В. П. Ананикову, без которого эта работа была бы невозможна, академику РАН И. П. Белецкой за ценные замечания и обсуждения. Рентгеноструктурный анализ был выполнен в сотрудничестве с д.х.н Г.Г. Александровым и член-корр. РАН И. Л. Еременко (ИОНХ РАН). Также хочу сказать большое спасибо студенту 4 курса химического факультета МГУ им. Ломоносова Кабешову Михаилу за помощь, поддержку и чувство юмора.

Подпись_____

(Малышев Д. А.)