ChemNet
 
Химический факультет МГУ

Научные достижения химического факультета
13.08.2018

Химики МГУ довели до ума новый способ синтеза фотонных кристаллов

Сотрудники Московского государственного университета разработали новый способ синтеза фотонных кристаллов – основы будущих фотонных компьютеров, а также солнечных элементов.


Рис. 1. Изображение поперечного сечения микроструктуры фотонного кристалла. Фотонный кристалл состоит из трубок с одинаковым внешним диаметром. В правом нижнем углу видна рассечённая трубка, внутренний диаметр которой периодически изменяется.

Фотонный кристалл – не только красивая игрушка природы, такая как опал, например, или крылья африканской бабочки-парусника. В нем скрыты возможности для создания таких технологий будущего, как фотонный компьютер, суперлинза и суперпризма, фотонные сверхпроводники и многое другое. В зависимости от сочетания энергии падающего на кристалл фотона и свойств кристалла, может либо распространяться в материале, либо отражаться от него. Если задавать структурные характеристики кристалла, то появляется возможность управлять распространением света в нем.

Особенный интерес для материаловедов представляют кристаллы, в которых не только оптическая, но и диэлектрическая проницаемость меняется с периодом, сравнимым с длиной световой волны. Такие материалы позволяют максимально эффективно переводить энергию фотонов в энергию электронов. А это особенно важно для производства фотоэлементов.

Существует множество методов получения фотонных кристаллов: самосборка, травление, голография, фотолитография, анодирование. Последний считается наиболее перспективным с промышленной точки зрения, потому что это сравнительно дешёвый метод получения нанопористых оксидов таких металлов, как алюминий, титан, цирконий, гафний и других.

Процесс проводят в двухэлектродной электрохимической ячейке: в электролит опускают катод и анод (металлические пластины) и подают напряжение. На катоде выделяется водород, на аноде происходит электрохимическое окисление металла до оксида - анодирование. Если проводить анодирование с периодически изменяющимися напряжением и током анодирования, то формируется пористая плёнка оксида с заданной по толщине пористостью и, следовательно, с модуляцией эффективного показателя преломления и диэлектрической проницаемости по толщине плёнки. Таким способом и получается фотонный кристалл.

Оксид титана TiO2 обладает более высоким показателем преломления, чем самый популярный анодный оксид - оксид алюминия, что при заданных оптических свойствах позволяет создавать на основе оксида титана более тонкие материалы. Если рассматривать фотонные кристаллы для солнечных батарей, то оксид титана наиболее подходит в качестве материала из-за своих полупроводниковых свойств.

В теории подобный процесс звучит отлично, но до сих пор отсутствие воспроизводимой и недорогой технологии создания фотонных кристаллов на основе диоксида титана мешало практическому применению таких материалов. Сотрудники химического факультета и факультета наук о материалах (ФНМ) МГУ под руководством кандидата химических наук, научного сотрудника Нины Саполетовой усовершенствовали методику синтеза диоксида титана при помощи анодирования, что позволило точно задавать структуру пористых оксидных плёнок.

В результате изменения напряжения анодирования по синусоидальному закону в диапазоне 40 – 60 Вольт в зависимости от плотности заряда, ученые получили нанотрубки анодного оксида титана с постоянным внешним диаметром и периодически изменяющимся с толщиной плёнки внутренним диаметром.

"Применяемые ранее методики анодирования не позволяли получать материалы с высокой степенью периодичности структуры", - пояснил один из авторов работы, научный сотрудник химического факультета МГУ к.х.н. Сергей Кушнир. - Мы разработали новую методику, ключевым составляющим которой является in situ (прим. – непосредственно во время синтеза) измерение заряда анодирования, что позволяет с высокой точность контролировать толщину слоёв с различной пористостью в формируемой оксидной плёнке".

Ранее ученые уже показали, что замена обычного диоксида титана на одномерный фотонный кристалл в фотоэлементах увеличит их эффективность в полтора раза. Поэтому у разработки ученых МГУ большой потенциал, считают авторы работы.

Исследование опубликовано в журнале Electrochemistry Communications.


Сервер создается при поддержке Российского фонда фундаментальных исследований
Не разрешается  копирование материалов и размещение на других Web-сайтах
Вебдизайн: Copyright (C) И. Миняйлова и В. Миняйлов
Copyright (C) Химический факультет МГУ
Написать письмо редактору