(3 + 3)-Cyclodimerization of Donor–Acceptor Cyclopropanes. Three **Routes to Six-Membered Rings**

Olga A. Ivanova,[†] Ekaterina M. Budynina,^{†,‡} Alexey O. Chagarovskiy,[‡] Igor V. Trushkov,^{†,‡} and Mikhail Ya. Melnikov*,[†]

[†]Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia [‡]Laboratory of Chemical Synthesis, Federal Research Center of Pediatric Hematology, Oncology and Immunology, Leninsky av. 117/2, Moscow 117997, Russia

Supporting Information

ABSTRACT: The ability of donor-acceptor cyclopropanes to (3 + 3)-cyclodimerize is disclosed. It has been found that Lewis acid-induced transformations of 2-(hetero)arylcyclopropane-1,1-dicarboxylates containing electron-abundant aromatic substituents led to the construction of sixmembered cyclic systems. Depending on the substrate properties and the Lewis acid applied, three types of products can be obtained: (1) 1,4-diarylcyclohexanes, (2) 1-aryl-1,2,3,4tetrahydronaphthalenes, and (3) 9,10-dihydroanthracenes.

INTRODUCTION

The cyclodimerizations of unsaturated compounds attract the attention of organic chemists as atom-economic reactions allowing for one-step construction of cyclic molecules with a considerable increase of structure complexity. The most investigated types of these processes are (2 + 2)-cyclodimerization of alkenes, allenes, and ketenes and (4 + 2)cyclodimerization of dienes, affording four- and six-membered rings, respectively.^{1,2} On the other hand, (3 + n)-cyclodimerizations are much less explored in spite of their great potential for construction of a diversity of carbo- and heterocycles.

In general, there are three types of species that can participate in (3 + n)-cyclodimerizations: (1) 1,3-dipoles, (2) 1,3-biradicals, and (3) three-membered rings. Thus, (3 + 2)cyclodimerization of nitrile oxides is a preparative method of furoxans synthesis.^{3,4} There are also scarce examples of other (3 + 2)-cyclodimerizations,^{5–7} among which the most important is a formation of cyclopentanes from the corresponding cyclopropane derivatives.^{8,9} Alternatively, (3 + 3)-cyclodimerizations have been reported for various 13-dipoles including nitrile oxides, 10,11 carbonyl oxides, $^{12-14}$ carbonyl imides, 15 nitrile imides, 16,17 carbonyl ylides, 18 thiocarbonyl ylides, $^{19-21}$ azomethine ylides, 22 etc. 23,24 (3 + 3)-Cyclodimerization has also been reported for 1,3-biradicals, such as trimethylenemethanes;²⁵ however, this reaction usually proceeds with low yields and is accompanied by formation of various side products.²⁶⁻²⁸ Additionally, there are limited reports of (3 + 3)-cyclodimerization for three-membered heterocycles (oxiranes,^{29–31} dioxiranes,³² thiiranes,^{33,34} thiirenes,³⁵ aziridines,^{36,37} and azirines³⁸⁻⁴⁰), which can be considered as precursors of the corresponding 1,3-dipoles.

The (3 + 3)-cyclodimerization of three-membered carbocycles is an almost unexplored field except for nickelcatalyzed dimerizations of methylenecyclopropanes.^{8,41} Meanwhile, there is a special class of cyclopropanes, namely donor-acceptor (D-A) cyclopropanes, which appear to be very appropriate as candidates for (3 + 3)-cyclodimeriza-tion.⁴²⁻⁴⁶ They are considered to be well-proven synthetic equivalents of a three-carbon 1,3-zwitterionic synthon of I type (Scheme 1) possessing a dual nature and showing both 1,3-dipole-like⁴⁷⁻⁵⁴ and dipolarophile-like⁵⁵⁻⁵⁷ properties. However, to date there have not been any reports where these two types of reactivity of D-A cyclopropanes were combined in one reaction proceeding as (3 + 3)-cyclodimerization and leading to the cyclohexane formation (I+I path, Scheme 1).

In addition, the alternative behavior of D-A cyclopropanes as synthetic equivalents of unusual synthon II (Scheme 1) was recently disclosed for cyclopropanes containing electron-rich aromatic or heteroaromatic substituents.⁵⁸⁻⁶² For such cyclopropanes, the (hetero)aromatic ring takes place in reactions as nucleophilic moiety. Therefore, the rival (3 + 3)-cyclodimerization affording dihydroanthracenes (II+II path, Scheme 1) can be hypothesized in this case.

Finally, a process combining the reactivity of D-A cyclopropanes as equivalents of both synthon I and synthon

Received: August 2, 2011 Published: September 26, 2011

Scheme 1. Three Hypothetical Paths of (3 + 3)-Cyclodimerization of Aryl-Derived D-A Cyclopropanes

Table 1. Cyclopropane-to-Cyclohexane (3 + 3)-Cyclodimerization of 1a-c

		$MeO \xrightarrow{CO_2R} CO_2R \xrightarrow{LA} Solvent \xrightarrow{RO_2C} CO_2R \xrightarrow{CO_2R} x + \overrightarrow{RO_2C} CO_2R \xrightarrow{CO_2R} CO_2R C$						
		1a: R = Et, R' = H 1b: R = Me, R' = I 1c: R = Et, R' = B	2a: R = Et, X = H 2b: R = Me, X = r 2c: R = Et, X =	2a : R = Et, X = 2,4,6-(MeO) ₃ 2b : R = Me, X = 2,4,6-(MeO) ₃ 2c : R = Et, X = 3-Br-2,4,6-(MeO) ₃		3a : R = Et, X = 2,4,6-(MeO) ₃ 3b : R = Me, X = 2,4,6-(MeO) ₃ 3c : R = Et, X = 3-Br-2,4,6-(MeO) ₃		
entry	1	solvent	LA (mol %)	T (°C)	time (h)	yield of 2 (%)	yield of 3 (%)	
1	1a	CH_2Cl_2	SnCl ₄ (120)	-20^{a}	22	81		
2	1a	$C_2H_5NO_2$	SnCl ₄ (120)	-60^{a}	3	82	13	
3	1a	CH ₃ NO ₂	SnCl ₄ (120)	55	3	83	5	
4	1a	C_6H_6	SnCl ₄ (120)	reflux	3	ь	ь	
5	1b	CH_2Cl_2	AlCl ₃ (100)	$-25/1 \text{ h} \rightarrow 5/2$	/22 h	5	70	
6	1b	CH_2Cl_2	$TiCl_4$ (120)	-20/15 min-	→20/1.5 h	27^{c}	17^c	
7	1b	CH ₃ NO ₂	$TiCl_4$ (120)	-20/15 min-	→20/3 h		traces	
8	1b	C_6H_6	$TiCl_4$ (200)	reflux	3		ь	
9	1b	CH_2Cl_2	$ZnCl_2$ (120)	20	4		86	
10	1b	$C_2H_4Cl_2$	ZnCl ₂ (200)	reflux	2	d	d	
11	1b	CH_2Cl_2	BF ₃ ·Et ₂ O (120)	reflux	6		85	
12	1b	CH ₃ NO ₂	GaCl ₃ (40)	20	4	26	19	
13	1c	CH_2Cl_2	SnCl ₄ (200)	-20	20		76	
14	1c	CH ₃ NO ₂	SnCl ₄ (220)	50	2	81		

^aThe reaction mixture was then allowed to warm to room temperature for 0.5 h. ^bOligomeric and polymeric ring-opening products were only formed. ^cNMR yields. ^dProduct of cyclopropane isomerization **4** was also formed in 10% yield.

II should result in the formation of tetrahydronaphthalenes (I+II path, Scheme 1). A single investigation mentioning an intermediate formation of dimers through I+II path is related to the synthesis of carbazoles from the indole-derived D–A cyclopropanes.^{59,60}

In this study, we aimed to perform a (3 + 3)-cyclodimerization of the (hetero)aryl-substituted D-A cyclopropanes. The challenge was to find appropriate conditions for controlling of the chemoselectivity of the process. During this investigation, we have revealed each of the three dimerization pathways presented in Scheme 1 and determined the main factors influencing these dimerizations. Herein we report the results of our research opening new synthetic routes to 1,4-diarylcyclohexanes, 1-aryl-1,2,3,4-tetrahydronaphthalenes, and 9,10-dihydroanthracenes.

RESULTS AND DISCUSSION

Substrate Selection. For the present research, 2-aryl- and 2-heteroarylcyclopropane-1,1-dicarboxylates were chosen according to the following prerequisites. First, they would give cyclodimers of all three types represented in Scheme 1. Second, these substrates revealed the tendency to easy ring-opening and have previously demonstrated high reactivity in various Lewis acid-induced transformations.^{42–57} In the presence of strongly activating Lewis acids, these cyclopropanes are readily converted into 1,3-zwitterions⁶³ in which anionic and cationic centers are efficiently stabilized by two electron-withdrawing ester groups and an electron-abundant (hetero)aromatic substituent, respectively. Finally, these compounds are readily accessible from (hetero)aromatic aldehydes through the sequence of Knoevenagel/Corey–Chaykovsky reactions.^{64,65}

Table 2. Cyclopropane-to-Cyclohexane (3 + 3)-Cyclodimerization of 2-[4-(Dialkylamino)phenyl]cyclopropane-1,1dicarboxylates 1d-h

The chemoselectivity of the process is determined by the relative reactivity of two nucleophilic sites (marked blue and green in Scheme 1). Evidently, if both *ortho*-positions of an aryl substituent are occupied, D–A cyclopropanes cannot react as an equivalent of synthon II. Therefore, to perform a direct dimerization via the I+I path and avoid two other paths (I+II and II+II) we have chosen 2-(2,4,6-trimethoxyphenyl)-cyclopropane-1,1-diesters as model substrates.

Oppositely, a (3 + 3)-cyclodimerization of D–A cyclopropanes into dihydroanthracenes via the II+II path implies utilization of D–A cyclopropanes with aryl groups which are prone to electrophilic attack onto the *ortho*-position. Therefore, 2-(3,4,5-trimethoxyphenyl)cyclopropane-1,1-dicarboxylate was selected as a model compound for this reaction.

The formation of tetrahydronaphthalenes through I+II path is a borderline case between two foregoing dimerizations, so the prediction of substrates, which should afford these products, is not so straightforward, as in two reactions above.

Cyclopropane-to-Cyclohexane (3 + 3)-Cyclodimerization (I+I Path). According to the above arguments, we initially examined cyclopropanes 1a,b as model substrates. The utilization of 1a,b with strong electron-donating substituent vicinal to the diester moiety proved to be necessary but insufficient condition to furnish (3 + 3)-cyclodimerization. Thus, we have found that the weakly or moderately activating Lewis acids (Yb(OTf)₃, Sn(OTf)₂, Sc(OTf)₃, Nd(OTf)₃) failed to induce this reaction at all. To our delight, more activating Lewis acids were revealed to promote the formation of cyclohexanes 2a,b (Table 1). However, the utilization of AlCl₂, BF₃·Et₂O, or GaCl₃ was not efficient providing low yields of 2a,b. The isomeric acyclic dimers 3a,b were usually formed as major products in these reactions. Among the studied Lewis acids, the best results were obtained with $SnCl_4$; in this case cyclohexane 2a was formed in ca. 80% yield. The presence of a bromine atom in aromatic substituent, as it is in 1c, had no significant effect on the reaction outcome. Further variations of the reaction conditions (solvent, temperature, duration, Lewis acid loading) disclosed that this cyclodimerization was the most efficient when it proceeded in CH₃NO₂ at 50-55 °C in the presence of 120-200 mol % of SnCl₄. Thus, the utilization of more than stoichiometric amounts of Lewis acid was caused by its competitive binding to methoxy groups or other donors of an electron pair in an aromatic substituent.

We have found that the occupation of *ortho*-positions in aromatic ring is not a necessary condition for cyclopropane-tocyclohexane (3 + 3)-cyclodimerization. Thus, a series of cyclopropanes 1d-h, which have a highly electron-donating NR₂ group at the *para*-position of the aromatic ring, was found to smoothly transform into the corresponding cyclohexanes 2d-h in moderate to good yields (Table 2). For cyclopropanes 1f-h the utilization of SnCl₄ led to low yields of 2, whereas TiCl₄ was employed efficiently. For all compounds except 1g, which decomposed partially under reaction conditions, the corresponding dimers were obtained in ca. 80% yields.

The cyclopropane-to-cyclohexane (3 + 3)-cyclodimerization proceeded with excellent diastereoselectivity: according to the NMR data, the cycloadducts **2a**–**h** were formed as single diastereomers. In comparison to ¹H and ¹³C NMR spectra of the parent cyclopropanes **1a**–**h**, the corresponding spectra of dimeric products **2a**–**h** were characterized by a low-field shift of resonances of alicyclic protons and carbon atoms. Additionally, ¹H NMR spectra of **2a**–**h** revealed the full coupling patterns for the ABX-system of the protons involving into two equivalent CH₂–CH fragments, namely ²J of ca. 14 Hz and ³J of ca. 3–5 and 13–14 Hz, which are also characteristic for saturated common rings.

The restricted rotation of aryl groups with bulky *ortho*substituents in cyclohexanes **2a,b** led to magnetic nonequivalency for protons of the aromatic rings and methoxy groups which gave at room temperature two and three different signals, respectively (for **2a**, see Figure 1). Variable-temperature ¹H NMR study revealed that the coalescence of signals of aromatic protons was achieved at 323 K. Using the approximate Eyring equation, we estimated the energy barrier for rotation of aryl groups in this molecule to be ca. 70 kJ/mol.

Structure of 2d was unambiguously proved by single-crystal X-ray analysis.^{66,67} These data showed that 2 has a *cis*-arrangement of aromatic substituents and the central six-membered ring in the molecule adopts a twist-conformation with quasi-equatorial location of the aromatic substituents (Figure 2). The similarity in NMR spectra for all isolated compounds 2 as well as single-crystal X-ray data for 2i (Figure 3, see below) allowed us to conclude that all cyclohexanes 2 were formed in this (3 + 3)-cyclodimerization as *cis*-isomers only.

The exclusive formation of *cis*-isomers of **2** seems to be quite unusual as *trans*-1,4-disubstituted cyclohexanes are well-known to be more preferable.^{1,2} Actually, our ab initio calculations at HF/6-31G level showed that *cis*-**2b** in a twist-conformation has 6.9 kj/mol lower energy than the most stable chair conformer

Figure 1. Temperature dependence of 600 MHz ¹H NMR spectrum of 2a in CDCl₃.

Figure 2. Single crystal X-ray structure of 2d.

of *trans*-2**b**. This trend, namely the preference of *cis*-isomer over *trans*-isomer, is observed in the series of various tetramethyl 2,5-bis(aryl)cyclohexane-1,1,4,4-tetracarboxylates.⁶⁷ It can be related to larger steric repulsions between ester groups and aryl substituents in the chair-conformation of *trans*-2**b** vs those in the twist-conformation of *cis*-2**b**. Similarly, significant steric hindrances can occur in the chairlike transition state leading to *trans*-2**b**, while twist-like transition state minimalizes them that could be a possible reason for the exclusive formation of *cis*-2**b**.

Structures of acyclic dimers 3 were established by analysis of NMR spectra. In particular, the ${}^{3}J$ coupling constants for

Figure 3. Single crystal X-ray structure of 2i.

C(Ar)H=CH- fragment are ca. 17 Hz, confirming the formation of 3 as *E*-isomers exclusively.

We suggest that the cyclopropane-to-cyclohexane (3 + 3)cyclodimerization proceeds by a mechanism which is shown in Scheme 2. The coordination of strongly activating Lewis acid to ester group(s) leads to the cyclopropane C(1)-C(2) bond heterolysis affording zwitterion A. Its formation is in accordance with results of a previous study of 2-arylcyclopropane-1,1-dicarboxylate reactivity in the absence of highly nucleophilic agents.⁶³ A valid argument toward formation of A is an isolation of side products 4 and 5 under milder reaction conditions. Indeed, it was previously found that γ -aryl- γ butyrolactones 5 were formed from D-A cyclopropanes in the presence of strongly activating Lewis acids as 1:1 mixtures of two diastereomers, 68 which is consistent with the intermediate formation of zwitterion A. Similarly, styrylmalonates 4 are the result of D-A cyclopropane isomerization by a stepwise mechanism, where the first step is the Lewis acid-induced heterolysis of the C-C bond in the small ring.⁶⁸ Additionally, polymeric products, which we observed under nonoptimized reaction conditions, are formed via zwitterion A too.

The second step is the attack of nucleophilic center of one zwitterionic species **A** onto the electrophilic center of another one affording new zwitterion **B**. The formation of **B** is supported by isolation of dimeric alkenes **3** either together with **2** or as single products under nonoptimized reaction conditions (Table 1). Therefore, malonic anion fragment in intermediate **B** has a dual reactivity. As a nucleophile, it interacts with benzylic cation to yield cyclohexane **2** (path *b*). As a base, it captures a proton from δ -position leading to acyclic dimer **3** (path *c*). A similar dual behavior of this moiety was previously found for the D–A cyclopropanes isomerization into styrylmalonates.⁶⁸

Cyclopropane-to-cyclohexane (3 + 3)-cyclodimerization is a conceptually new efficient approach to the symmetrically substituted cyclohexane derivatives. Moreover, to date there have not been efficient diastereoselective approaches to *cis*-1,4-diarylcyclohexanes.⁶⁹ Therefore, cyclopropane-to-cyclohexane (3 + 3)-cyclodimerization followed by appropriate transformations

8855

Article

Scheme 2. Proposed Mechanism for Cyclopropane-to-Cyclohexane (3 + 3)-Cyclodimerization

Table 3. Optimization of Reaction Conditions for (3 + 3)-Cyclodimerization of 2-(4-Methoxyphenyl)cyclopropane-1,1dicarboxylates 1i,j

^{*a*}Chloride **6** was only formed in 80% yield. ^{*b*}Lactone **5** was only formed in 70% yield. ^{*c*}Oligomeric and polymeric ring-opening products were only formed. ^{*d*}Afterward the reaction mixture was allowed to warm to room temperature for 0.5 h. ^{*e*}Compound **8** was obtained as a side product in 30% yield (see Scheme 3 and related discussion).

of **2** into other cyclohexane derivatives provide convenient access to these systems. The formed 2,5-diarylcyclohexane-1,1,4,4-tetracarboxylates of type **2** are of particular interest as direct precursors of liquid crystalline compounds⁷⁰ or anticholesteremic agents.⁷¹

(3 + 3)-Cyclodimerization of 2-(4-Methoxyphenyl)cyclopropane-1,1-dicarboxylates (I+I and I+II Paths). Other substrates, which contain a phenyl group with a strongly electron-donating substituent at the para-position and can undergo (3 + 3)-cyclodimerization via the I+I path, are 4methoxyphenylcyclopropanes 1i,j. A short survey of Lewis acids indicated that TiCl₄, which was a favorable initiator for dimerization of 4-(dialkylamino)phenyl-containing D-A cyclopropanes 1f-h, was inefficient for dimerization of 4methoxyphenyl D-A cyclopropanes 1i,j. Thus, the treatment of 1i with TiCl₄ in CH₃NO₂ at -25 °C only afforded chloride 6, the product of TiCl₄-induced cyclopropane ring-open $ing^{61,68,72}$ (Table 3, entry 1). The reverse addition of 1i to a TiCl₄ solution at -5 to 0 °C yielded γ -butyrolactone 5 as a single product (entry 2). Gratifyingly, the treatment of 1i with TiCl₄ at 5 °C allowed us to obtain the product of the (3 + 3)-

cyclodimerization 2i in 45% yield (entry 3). Further increase in reaction temperature did not result in better yield of 2i due to the significant formation of oligomeric and polymeric ringopening products.

The utilization of SnCl₄ unexpectedly resulted in alteration of the reaction pathway from I+I to I+II (3 + 3)-cyclodimerization. Thus, the treatment of 1i with 1 equiv of SnCl₄ in various solvents produced 7a in moderate to good yields (entries 4-6). The careful optimization of reaction conditions for dimerization of 1j showed that $SnCl_4$ (1 equiv) induced the formation of a tetraline 7b in high yield when the reaction was performed in CH₃NO₂ under moderate heating (entry 9). However, when the same reaction was carried out at room temperature, both tetraline 7b and cyclohexane 2j were obtained in ca. 5:4 ratio (entry 10). The increase in a Lewis acid loading allowed for suppression of 7b formation but did not increase yield of cyclohexane 2j (entry 11). The utilization of BF3·Et2O and TMSOTf did not lead to both 2 and 7 affording polymeric products only. Oppositely, AlCl₃ was found to furnish (3 + 3)-cyclodimer 2j in the reasonable yield (entry 13).

Structures of 2i,j were assigned by comparison of their spectral data with those for 2a-h and proved unambiguously by single crystal X-ray analysis of 2i (Figure 3).^{66,67} Structures of 7a,b were determined as discussed below.

The mechanism that can be proposed for the (3 + 3)cyclodimerizations of 1i,j is shown in Scheme 3. The formation of zwitterion B in the case of the cyclodimerization through I +II path is the same as that for the cyclopropane-tocyclohexane dimerization (I+I path). The coupling between benzylic cation and malonate moiety in **B** (path **b** in Scheme 3) leads to cyclohexane 2, whereas electrophilic substitution at ortho-position of an aromatic fragment furnishes tetraline 7 (path ortho-d). The transformation of B into 7 can also proceed via initial electrophilic attack onto the activated ipsoposition of aromatic group resulting in intermediate C (path *ipso-d*) followed by migration of electrophile to *ortho*-position. The ipso-intermediate of C type was recently proposed for dimerization of the indole-derived D-A cyclopropanes.⁷³ The competition between ortho- and ipso-attack is well-known and regulated by a balance of steric and electronic factors.^{1,2} The high electron-donating ability of para-methoxy group makes more preferable the electrophilic attack to ipso-position. Oppositely, the higher steric repulsions for ipso-attack make ortho-attack more preferable. We confirmed the possibility of ipso-attack by the isolation of unusual side-product 8 (Scheme 3) containing angularly fused benzo[c]pentalene scaffold. It was formed in 30% yield when dimerization of 1i was performed in benzene in the presence of 1.5 equiv of $SnCl_4$ (Table 3, entry 7).

Compound 8 was formed as a single diastereomer. Its structure was assigned by 1D and 2D COSY, HETCOR, HMBC, and NOESY NMR spectral data. The following criteria were used to elucidate the structure of 8. (1) In ¹H NMR spectrum three ABX systems correspond to the protons of three isolated CH-CH₂ fragments, which, according to the HMBC, are connected to two different C(CO₂Me)₂ groups in such a way that one of the CHCH₂ fragments is located between two C(CO₂Me)₂ groups. (2) The presence of a cyclohexenone moiety is easily determined by characteristic signals at $\delta_{\rm C}$ 154.9, 127.8, and 195.8 ppm assigned to three consecutive carbon atoms of CH=CHC=O conjugated system. (3) In the aromatic region, only one set of signals for

the *p*-methoxyphenyl substituent is observed. The relative stereochemistry of **8** was deduced from its NOESY spectrum. The central benzo[*c*]pentalene core has the only possible relative configuration, whereas aromatic substituent at C(1) atom is arranged in a *trans*-position relative to the cyclohexenone motif (Figure 4).

Figure 4. Representative NOE responses for 8.

Cyclopropane-to-Tetrahydronaphthalene (3 + 3)-Cyclodimerization (I+II Path). Cyclopropanes 1k,l and 1m,n containing 3,4-dialkoxyphenyl and thienyl groups, respectively, were found to readily give cyclic dimers 7c-f via I+II path of (3 + 3)-cyclodimerization (Table 4). The most efficient promoter for these reactions was found to be SnCl₄. The increase in donating ability of aryl substituent enhanced the tendency to polymerization of initial cyclopropanes 1k-n. To inhibit the polymerization, we added Lewis acid to a cooled solution of a cyclopropane and then stirred the reaction mixture under cooling (for 1k,n) or slowly heated it to temperature specified in Table 4 (for 11,m).

All structural assignments for 7a-f were made from analysis of ¹H and ¹³C NMR data. The presence of a benzannulated central motif in the molecules of 7a-f was confirmed by a new signal arising for a quaternary carbon atom of the aromatic ring instead of the signal of a methine carbon. The ¹H NMR spectra revealed resonances of two independent systems which are formed by the protons of CH₂-CH fragment of a new sixmembered ring and CH-CH₂-CH aliphatic side chain. The products 7c,d were formed as single regioisomers via electrophilic attack onto C(6) rather than C(2) atom of arene ring. Compounds 7a-f were formed as mixtures of two diastereomers. The stereochemical assignments were

Table 4. (3 + 3)-Cyclodimerization of D-A Cyclopropanes 1k-n via I+II Path

"Afterwards the reaction mixture was allowed to warm to room temperature for 0.5 h. "Reaction mixture was kept at 50 °C for additional 0.5 h.

accomplished on the basis of NOE experiments for the major isomer of 7e (Figure 5). According to these data, the major

Figure 5. Representative NOE responses for the trans-7e.

isomers of 7a-f have a *trans*-arrangement of aryl and 2,2-bis(alkoxycarbonyl)ethyl substituents.

The mechanism of (3 + 3)-cyclodimerization of 1k-n via the I+II path was described above using the example of 1i dimerization (Scheme 3). It is noteworthy that cyclopropanes 1k, I have an additional donor alkoxy group at the C(3) position. This group facilitates electrophilic attack onto both *ortho*-positions (path *ortho-d*). Thus, the *ipso*-attack (path *ipso-d*) seems to be redundant for the explanation of the obtained results in this case. Additionally, the *m*-alkoxy group introduces desymmetrization into the arene substituent leading to the possibility of formation of two regioisomers during the dimerization of these substrates. However, the cyclodimerization in this case proceeded with excellent regioselectivity exclusively producing regioisomers 7c, d via electrophilic substitution at the 6-position of the aryl ring.

A fragment of 1-aryl-1,2,3,4-tetrahydronaphthalenes is present in many lignans including biologically active ones.⁷⁴ Two of them (etoposide and teniposide) are now being used as anticancer drugs.⁷⁵ Therefore, the (3 + 3)-cyclodimerization of D–A cyclopropanes via path I+II opens broad possibilities for both synthetic and medicinal chemists.

Cyclopropane-to-Dihydroanthracene (3 + 3)-Cyclodimerization (II+II Path). (3,4,5-Trimethoxyphenyl)cyclopropane 10 was found to be an excellent model for (3 + 3)-cyclodimerization via the II+II path leading to dihydroanthracene 9a in good yield (Scheme 1, Table 5) due to the efficient activation of ortho-positions in an aromatic substituent. The optimization of reaction conditions demonstrated that this transformation proceeded efficiently at 50-60 °C in the presence of 2 equiv of $SnCl_4$ (entry 3). The variation of reaction temperature or Lewis acid loading resulted in diminished yield of 9a. Thus, utilization of 1.2 equiv of SnCl₄ afforded the target product 9a in 65% yield together with the corresponding tetrahydronaphthalene 7g in 21% yield (entry 2). The catalytic version of this transformation can be performed using moderately activating $Sn(OTf)_2$ (entry 4). Moreover, dihydroanthracene 9a was obtained in this case in higher yield and diastereoselectivity in comparison with SnCl₄induced reactions. Cyclopropanes 1p,q, containing 3,5- and 2,3dimethoxyphenyl groups, respectively, as donor substituents, also produced dihydroanthracenes 9b,c when activated with 1-1.5 equiv of $SnCl_4$ or catalytic amounts of $Sn(OTf)_2$. Diastereoselectivity of (3 + 3)-cyclodimerization of **10**,p was

poor: anthracenes 9a,b were formed as mixtures of two diastereomers in a slight excess of *trans*-isomer. In contrast, dimerization of D–A cyclopropane 1q, possessing a methoxy group in the *ortho*-position, proceeded with high diastereose-lectivity affording mostly *trans*-9c.

The mass spectral data unambiguously proved the dimeric composition of 9a-c, while NMR data evidenced a symmetric structure of compounds synthesized. ¹H NMR spectra completely revealed coupling patterns for a system of the protons of two identical CHCH₂CH fragments. In the ¹³C NMR spectra, a new signal of a quaternary carbon atom was observed in the aromatic region instead of resonance of a methine carbon that confirmed additional substitution in aromatic ring. Furthermore, single-crystal X-ray data were obtained for *trans*-9a and *trans*-9c providing unambiguous proof for dihydroanthracene scaffold.⁶⁷

The construction of dihydroanthracene core of 9 from 1 consists in formation of two C–C bonds by two consecutive S_EAr reactions (Scheme 4). It can be achieved by Lewis acid-induced cyclopropane ring-opening with formation of zwitter-

ion A followed by its attack onto the starting cyclopropane 1 containing highly nucleophilic aromatic substituent⁷⁶ (path f, Scheme 4). Then Lewis acid induces opening of the second cyclopropane into zwitterion **D**. The intramolecular attack of the nucleophilic aromatic ring by electrophilic center in **D** (path g, Scheme 4) completes the transformation.

Despite significant attention paid to various 9,10-dihydroanthracenes that is reflected to multiple publications dealing with their chemical and biological properties, compounds of type 9 have not been studied yet mainly due to the complexity of their synthesis. Therefore, this method of (3 + 3)-cyclodimerization of the D–A cyclopropanes can be useful as an efficient approach to these compounds.

Overall Mechanistic Scheme for (3 + 3)-Cyclodimerizations of the D–A Cyclopropanes. Therefore, D–A cyclopropanes with electron-abundant aromatic groups as donor substituent revealed an ability to undergo three types of (3 + 3)-cyclodimerization affording cyclohexanes 2, tetrahydronaphthalenes 7, or 9,10-dihydroanthracenes 9. The putative rationale of their formation is given above. Nevertheless, some mechanistic aspects should be specified.

The first question is a sequence of C-C bonds formation in tetralines 7 via the I+II path. Above we postulated that the first C-C bond is formed by the coupling of malonate anion with benzyl cation of two zwitterions A furnishing intermediate B and the formation of the second C–C bond is a result of S_EAr reaction. However, the reverse sequence can be hypothesized, which involves initial S_EAr reaction followed by coupling of malonate anion with benzyl cation. For dimerization of 1i,j the latter sequence is not appropriate as in these compounds arene ring is activated to electrophilic substitution at the orthoposition to methoxy group rather than to the *ortho*-position to cyclopropyl moiety, while actually, the substitution proceeds at the ortho-position to the cyclopropyl ring. Another argument toward reaction path presented in Scheme 3 is the formation of 8 that is in accordance with intermediate B generation. Moreover, S_EAr reaction should be accompanied by a proton migration from arene to malonate moiety what prevents participation of a latter nucleophilic site in further transformation. Therefore, we are inclined to the mechanism of tetraline 7 formation wherein anion-cation coupling precedes $S_{\rm F}Ar$ process rather than reverse sequence.

			(MeO) _n 10-q	LA (MeO Solvent MeC	p_{2C} p_{2C} p_{2C} p_{2-C} p_{2-C}	CO ₂ Me CO ₂ Me (OMe) _n		
entry	1	$(MeO)_n$	Lewis acid (mol %)	solvent	$T(^{\circ}C)$	time (h)	yield of 9 (%)	<i>trans/cis</i> ratio
1	10	$3,4,5-(MeO)_3$	$SnCl_4$ (5)	CH ₃ NO ₂	50	3		
2	10	$3,4,5-(MeO)_3$	SnCl ₄ (120)	CH ₃ NO ₂	60	3	65 ^a	54:46
3	10	3,4,5-(MeO) ₃	SnCl ₄ (200)	CH ₃ NO ₂	50	1	77	58:42
4	10	$3,4,5-(MeO)_3$	$Sn(OTf)_2$ (10)	CH ₃ NO ₂	50	4.5	88	63:37
5	1p	$3,5-(MeO)_2$	SnCl ₄ (150)	CH ₃ NO ₂	50	3	65	55:45
6	1p	$3,5-(MeO)_2$	$Sn(OTf)_2$ (10)	CH ₃ NO ₂	60	3	80	64:36
7	1q	$2,3-(MeO)_2$	SnCl ₄ (100)	CH ₃ NO ₂	55	2	31	>95:5
8	1q	$2,3-(MeO)_2$	$Sn(OTf)_2$ (10)	CH ₃ NO ₂	100	8	61	90:10

^aTetrahydronaphthalene 7g (dr 72:28) was also isolated in 21% yield.

Figure 6. Conformations of intermediate B leading to formation of (a) cis-2, (b) trans-7, and (c) cis-7.

The second question is the competition between formation of cyclohexanes 2 and tetralines 7 from the same intermediate B. This dual behavior can be explained by means of analysis of the reactive conformations of intermediate B which are shown in Figure 6. Eclipsed twist-like conformation a is a direct precursor for the transition state leading to cyclohexane 2 with a *cis*-arrangement of aromatic groups. Meanwhile, the staggered conformations b and c favored for trans-7 and cis-7 construction, respectively, can be stabilized by interaction of the electron-depleted benzyl cation and the electron-enriched second aromatic ring resulting in a $\pi - \pi^*$ donor-acceptor complex.^{62,73} In this case, chemoselectivity is provided by the close proximity of two reaction centers, namely benzyl cation and nucleophilic ortho-position of aryl substituent. Despite the higher nucleophilicity of the malonyl anion,⁷⁷ its attack in this case is not competitive. The same preference of nucleophilic site at the ortho-position of an aromatic substituent rather than malonyl anion was recently found for heteroaryl-substituted D-A cyclopropanes.⁵⁸⁻⁶²

One more possibility should be analyzed, which involves initial formation of one cycloadduct followed by its rearrangement into another product. Similar transformations were found recently in reactions of D-A cyclopropanes with enols^{78,79} and aldehydes.⁵¹ For example, cyclopropanes 1i,j form either cyclohexanes 2i,k or tetrahydronaphthalenes 7a,b depending on the reaction conditions. We checked the possibility of rearrangement of one cyclodimer into another one. For this purpose, we treated a solution of cyclohexane 2i in CH₃NO₂ with 5 equiv of SnCl₄ or TiCl₄ and heated the reaction mixture under reflux for 2-24 h. Similarly, tetrahydronaphthalene 7a was treated with 3 equiv of SnCl₄ in benzene and heated at 50 °C for 5 h. No interconversion of 2i and 7a was observed according to the NMR spectra. Similarly, we have not found conversion of 7 into dihydroanthracene 9. Therefore, we believe that cyclodimers 2, 7, and 9 are formed along three independent paths a-b, a-d, and f-g, respectively. The overall scheme of (3 + 3)-cyclodimerizations of the D-A cyclopropanes can be represented in the following way (Scheme 5).

On the whole, a balance of numerous factors, such as substrate nature, activating ability of a Lewis acid, temperature, solvent, etc., controls the outcome of the (3 + 3)-cyclo-dimerization. The further studies on the reaction mechanism in detail are now in progress.

CONCLUSION

In the present research, we demonstrated for the first time the possibility of the Lewis acid-induced (3 + 3)-cyclodimerization of 2-(hetero)arylcyclopropane-1,1-dicarboxylates with formation of three different types of six-membered cyclic systems. In these processes three reaction centers of a D-A cyclopropane molecule can be involved, namely C(1) atom of small ring and ortho-carbon atom of an aromatic substituent as nucleophilic sites and C(2) atom of cyclopropane as an electrophilic site. As a result, the facile synthetic approach to 1,4-diarylcyclohexanes, 1-aryl-1,2,3,4-tetrahydronaphthalenes, and 9,10-dihydroanthracenes from easily available reagents using inexpensive promotor has been developed. The (3 + 3)-cyclodimerization leading to 1,4-diarylcyclohexanes proceeded with excellent diastereoselectivity furnishing cis-isomer excusively, while diastereoselectivity of 1-aryl-1,2,3,4-tetrahydronaphthalenes and 9,10-dihydroanthracenes construction varied from moderate to high with the predominante formation of trans-isomers. To provide chemoselectivity of the processes, the careful optimization of reaction conditions was undertaken which resulted in the development of procedures affording these three types of products of (3 + 3)-cyclodimerization in good yields.

EXPERIMENTAL SECTION

General Procedure for the Synthesis of Cyclopropanes 1a,b,d–q.^{64,65} To a stirred suspension of NaH (0.24 g, 6 mmol) in dry DMSO (10 mL) was added trimethylsulfoxonium iodide (1.32 g, 6 mmol) in a single portion at room temperature. Vigorous evolution of hydrogen lasted ca. 10 min, after which the reaction mixture was stirred for an additional 25 min. Then a solution of alkylidenemalonate (5 mmol) in dry DMSO (2 mL) was added in a single portion. The resulted mixture was stirred under the conditions specified, poured into H₂O–ice (10 mL), and extracted with diethyl ether (5 × 5 mL). The combined organic layers were washed with water (5 × 5 mL), dried with Na₂SO₄, and concentrated in vacuo. Cyclopropanes were purified by column chromatography (SiO₂, eluent: diethyl ether).

Dimethyl 2-(4-Piperidinophenyl)cyclopropane-1,1-dicarboxylate (1f). Compound 1f was synthesized from dimethyl 2-(4piperidinobenzylidene)malonate (10a), reaction time 1 h, and isolated as an orange oil (1.06 g, 67%): R_f 0.48 (diethyl ether/hexane 1:1); ¹H NMR (CDCl₃, 600 MHz) δ 1.52–1.57 (m, 2H, CH₂), 1.65–1.69 (m, 4H, CH₂), 1.70 (dd, ${}^{2}J$ = 5.0 Hz, ${}^{3}J$ = 9.5 Hz, 1H, CH₂), 2.15 (dd, ${}^{2}J$ = 5.0 Hz, ${}^{3}J = 7.9$ Hz, 1H, CH₂), 3.08–3.12 (m, 4H, CH₂N), 3.15 (dd, ${}^{3}J = 7.9$ Hz, ${}^{3}J = 9.5$ Hz, 1H, CH), 3.37 (s, 3H, CH₃O), 3.76 (s, 3H, CH₃O), 6.82 (d, ${}^{3}J$ = 8.3 Hz, 2H, CH, Ar), 7.05 (d, ${}^{3}J$ = 8.3 Hz, 2H, CH, Ar); ¹³C NMR (CDCl₃, 150 MHz) δ 19.3 (CH₂), 24.2 (CH₂), 25.8 (2 \times CH₂), 32.6 (CH), 37.1 (C), 50.4 (2 \times CH₂N), 52.3 (CH₃O), 52.7 (CH₃O), 116.0 (2 × CH, Ar), 124.5 (C, Ar), 129.1 (2 × CH, Ar), 151.4 (C, Ar), 167.2 (CO₂Me), 170.4 (CO₂Me); IR (Nujol, cm⁻¹) 2952, 2865, 2820, 1740, 1619, 1524, 1455, 1390, 1340, 1290, 1250, 1184, 1145, 1035, 930, 840, 781, 740; GC-MS m/z 318 (27), 317 (100) [M]⁺, 316 (57), 258 (31), 198 (88), 142 (24), 130 (30), 115 (83), 59 (34). Anal. Calcd for $C_{18}H_{23}NO_4$: C, 68.12; H, 7.30; N, 4.41. Found: C, 67.82; H, 7.14; N, 4.61.

Dimethyl 2-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)cyclopropane-1,1-dicarboxylate (11). Compound **11** was synthesized from dimethyl 2-[(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)methylene]malonate (**10b**), reaction time 1 h, and isolated as a white solid (1.12 g, 77%): mp 92–93 °C; R_f 0.52 (diethyl ether/ hexane ether 1:2); ¹H NMR (CDCl₃, 600 MHz) δ 1.65 (dd, ²J = 5.1 Hz, ³J = 9.3 Hz, 1H, CH₂), 2.05 (dd, ²J = 5.1 Hz, ³J = 8.0 Hz, 1H, CH₂), 3.08 (dd, ³J = 8.0 Hz, ³J = 9.3 Hz, 1H, CH), 3.40 (s, 3H, CH₃O), 3.72 (s, 3H, CH₃O), 4.16 (s, 4H, OCH₂CH₂O), 6.61 (dd, ³J = 8.4 Hz, ⁴J = 2.0 Hz, 1H, CH, Ar), 6.62 (d, ⁴J = 2.0 Hz, 1H, CH, Ar), 6.70 (d, ³J = 8.4 Hz, 1H, CH, Ar); ¹³C NMR (CDCl₃, 150 MHz) δ 19.3 (CH₂), 32.1 (CH), 37.0 (C), 52.3 (CH₃O), 52.7 (CH₃O), 64.2 (CH₂O), 64.3 (CH₂O), 116.9 (CH, Ar), 117.3 (CH, Ar), 121.4 (CH, Ar), 127.6 (C, Ar), 142.9 (C, Ar), 143.2 (C, Ar), 167.0 (CO₂Me), 170.2 (CO₂Me); IR (Nujol, cm⁻¹) 3450, 2975, 2895, 1735, 1630, 1593, 1518, 1445, 1380, 1290, 1220, 1138, 1080, 940, 897, 828, 780, 710; GC-MS m/z 292 (52) [M]⁺, 232 (51), 228 (82), 200 (21), 179 (59), 173 (100), 117 (30), 89 (57), 78 (29), 59 (70). Anal. Calcd for C₁₅H₁₆O₆: C, 61.64; H, 5.52. Found: C, 61.79; H, 5.75.

Dimethyl 2-(3,5-Dimethoxyphenyl)cyclopropane-1,1-dicarboxylate (1p). Compound 1p was synthesized from dimethyl 2-(3,5-dimethoxybenzylidene)malonate (10c), reaction time 1 h, and isolated as white solid (0.98 g, 67%): mp 69–70 °C; ¹H NMR (CDCl₃, 600 MHz) δ 1.68 (dd, ²J = 5.1 Hz, ³J = 9.2 Hz, 1H, CH₂), 2.10 (dd, ²J = 5.1 Hz, ³J = 8.0 Hz, 1H, CH₂), 3.13 (dd, ³J = 8.0 Hz, ³J = 9.2 Hz, 1H, CH), 3.41 (s, 3H, CH₃O), 3.71 (s, 6H, 2 × CH₃O), 3.74 (s, 3H, CH₃O), 6.26 (br.d, ⁴J = 2.0 Hz, 1H, CH, Ar), 6.28 (d, ⁴J = 2.0 Hz, 2H, 2 × CH, Ar); ¹³C NMR (CDCl₃, 150 MHz) δ 19.4 (CH₂), 32.6 (CH), 37.1 (C), 52.4 (CH₃O), 52.8 (CH₃O), 55.2 (2 × CH₃O), 99.6 (CH, Ar), 106.3 (2 × CH, Ar), 137.0 (C, Ar), 160.5 (2 × C, Ar), 167.0 (CO₂Me), 170.2 (CO₂Me); IR (Nujol, cm⁻¹) 2960, 2875, 1730, 1600, 1480, 1385, 1250, 1210, 1160, 1085, 1065, 940, 870, 840, 820, 775, 745. Anal. Calcd for C₁₅H₁₈O₆: C, 61.22; H, 6.16. Found: C, 61.13; H, 6.11.

Diethyl 2-(3-Bromo-2,4,6-trimethoxyphenyl)cyclopropane-1,1-dicarboxylate (1c). N-Bromosuccinimide (NBS, 0.10 g, 0.57 mmol) was added to a solution of diethyl 2-(2,4,6-trimethoxyphenyl)cyclopropane-1,1-dicarboxylate (1a) (0.20 g, 0.57 mmol) in CH₂Cl₂ (6 mL) at -60 °C. The reaction mixture was slowly warmed to -20 °C and stirred at that temperature until 1a was consumed (TLC monitoring). Then the reaction mixture was quenched at -20 °C with 10% aqueous K₂CO₃ (2 mL), warmed to room temperature, diluted with H_2O (10 mL), and extracted with CH_2Cl_2 (2 × 20 mL). The combined organic extracts were dried with MgSO4, concentrated in vacuo, and purified by flash chromatography (eluent: hexane/ethyl acetate 3:1) to yield 1c (223 mg, 91%) as a yellowish oil: Rf 0.42 (hexanes/ethyl acetate 2:1); ¹H NMR (CDCl₃, 400 MHz) δ 0.88 (t, ${}^{3}J$ = 7.1 Hz, 3H, CH₃), 1.24 (t, ${}^{3}J$ = 7.1 Hz, 3H, CH₃), 1.75 (dd, ${}^{2}J$ = 4.8 Hz, ${}^{3}J = 9.4$ Hz, 1H, CH₂), 2.37 (dd, ${}^{2}J = 4.8$ Hz, ${}^{3}J = 8.3$ Hz, 1H, CH_2), 2.84 (dd, ${}^{3}J = 8.3$ Hz, ${}^{3}J = 9.4$ Hz, 1H, CH), 3.72 (s, 3H, CH₃O), 3.74 (s, 3H, CH₃O), 3.78–3.83 (m, 2H, CH₂O), 3.80 (s, 3H, CH₃O), 4.16–4.23 (m, 2H, CH₂O), 6.20 (s, 1H, CH, Ar); ¹³C NMR (CDCl₃, 100 MHz) δ 13.7 (CH₃), 14.1 (CH₃), 21.3 (CH₂), 25.2 (CH), 35.3 (C), 55.8 (CH₂O), 56.3 (CH₂O), 60.6 (CH₃O), 60.8 (CH₃O), 61.2 (CH₃O), 92.2 (CH, Ar), 97.9 (C, Ar), 110.6 (C, Ar), 156.4 (C, Ar), 158.1 (C, Ar), 159.7 (C, Ar), 167.3 (CO₂Et), 170.1 (CO₂Et); IR (Nujol, cm⁻¹) 2995, 2935, 2865, 1730, 1600, 1590, 1460, 1400, 1325, 1290, 1210, 1185, 1130, 1035, 920, 880, 810, 745. Anal. Calcd for C₁₈H₂₃BrO₇: C, 50.13; H, 5.38. Found: C, 50.04; H, 5.23.

General Procedure for the Lewis Acid-Induced Dimerization of Cyclopropanes 1a–q. Lewis acid (AlCl₃, Sn(OTf)₂, ZnCl₂) or a solution of Lewis acid (SnCl₄, TiCl₄) in dry solvent (1 mL) was added to a vigorously stirred solution of cyclopropane 1 containing molecular sieves 4 Å. The resulting mixture was kept under the conditions specified and poured into 10 mL of saturated aqueous NaHCO₃. After extraction with CH₂Cl₂ (3 × 10 mL), the combined organic fractions were washed with aqueous Trilon B (3 × 10 mL) and water (2 × 10 mL) and dried with Na₂SO₄. The solvent was evaporated under vacuum, and the residue was purified by column chromatography (SiO₂) to yield the desired product.

Tetraethyl *cis*-2,5-Bis(2,4,6-trimethoxyphenyl)cyclohexane-1,1,4,4-tetracarboxylate (2a). A solution of 1a (350 mg, 1.0 mmol) in CH₃NO₂ (14 mL) was treated with SnCl₄ (280 mg, 0.13 mL, 1.1 mmol), and the resulting mixture was stirred at 55 °C for 3 h affording 2a (292 mg, 83%) as a white foam: mp 153–154 °C; R_f 0.50 (dietyl ether); ¹H NMR (CDCl₃, 400 MHz) δ 0.69 (t, ³*J* = 7.1 Hz, 6H, 2 × CH₃), 1.37 (t, ³*J* = 7.1 Hz, 6H, 2 × CH₃), 2.14 (dd, ²*J* = 13.7 Hz, ³*J* = 5.2 Hz, 2H, 2 × CH^aH), 3.36 (dd, ²*J* = 13.7 Hz, ³*J* = 13.6 Hz, 2H, 2 × CH^bH), 3.43–3.51 (m, 2H, OCH₂), 3.57–3.66 (m, 2H, OCH₂), 3.73 (s, 6H, 2 × OCH₃), 3.78 (s, 6H, 2 × OCH₃), 3.82 (s, 6H, 2 × OCH₃), 4.01–4.09 (m, 2H, OCH₂), 4.44–4.52 (m, 2H, OCH₂), 4.85 (dd, ³*J* = 5.2 Hz, ³*J* = 13.6 Hz, 2H, 2 × CH), 6.06 (br.s, 2H, 2 × CH, Ar), 6.12 (br.s, 2H, 2 × CH, Ar); ¹³C NMR (CDCl₃, 100 MHz) δ 13.4 $\begin{array}{l} (2\times {\rm CH}_3), \, 14.2 \, (2\times {\rm CH}_3), \, 29.9 \, (2\times {\rm CH}), \, 30.3 \, (2\times {\rm CH}_2), \, 54.5 \\ (2\times {\rm OCH}_3), \, 55.3 \, (2\times {\rm OCH}_3), \, 56.8 \, (2\times {\rm OCH}_3), \, 58.6 \, (2\times {\rm C}), \, 60.2 \\ (2\times {\rm OCH}_2), \, 61.5 \, (2\times {\rm OCH}_2), \, 90.9 \, (2\times {\rm CH}, \, {\rm Ar}), \, 91.4 \, (2\times {\rm CH}, \, {\rm Ar}), \, 113.6 \, (2\times {\rm C}, \, {\rm Ar}), \, 159.3 \, (2\times {\rm C}, \, {\rm Ar}), \, 159.6 \, (2\times {\rm C}, \, {\rm Ar}), \, 159.9 \\ (2\times {\rm C}, \, {\rm Ar}), \, 170.4 \, (2\times {\rm CO}_2 {\rm Et}), \, 172.3 \, (2\times {\rm CO}_2 {\rm Et}); \, {\rm IR} \, ({\rm Nujol}, \, {\rm cm}^{-1}) \\ 2930, \, 2870, \, 1720, \, 1600, \, 1480, \, 1380, \, 1335, \, 1160, \, 1125, \, 1070, \, 965, \, 880, \\ 820, \, 740. \, {\rm Anal.} \, {\rm Calcd} \, {\rm for} \, {\rm C}_{36} {\rm H}_{48} {\rm O}_{14}: \, {\rm C}, \, 61.35; \, {\rm H}, \, 6.86. \, {\rm Found:} \, {\rm C}, \\ 61.21; \, {\rm H}, \, 7.01. \end{array}$

Tetramethyl cis-2,5-Bis(2,4,6-trimethoxyphenyl)cyclohexane-1,1,4,4-tetracarboxylate (2b). A solution of 1b (160 mg, 0.5 mmol) in CH₃NO₂ (7 mL) was treated with GaCl₃ (36 mg, 0.2 mmol), and the resulting mixture was stirred at 20 °C for 4 h affording 2b (42 mg, 26%) and 3b (31 mg, 19%). 2b: colorless liquid; R_f 0.45 (diethyl ether); ¹H NMR (CDCl₃, 600 MHz) δ 2.13 $(dd, {}^{2}J = 13.8 Hz, {}^{3}J = 5.2 Hz, 2H, 2 \times CH^{a}H), 3.08 (s, 6H, 2 \times CH^{a}H)$ OCH_3), 3.35 (dd, ²J = 13.8 Hz, ³J = 14.0 Hz, 2H, 2 × CH^bH), 3.67 (s, $6H_{1} 2 \times OCH_{3}$), 3.79 (s, 12H, $4 \times OCH_{3}$), 3.82 (s, $6H_{1} 2 \times OCH_{3}$), 4.80 (dd, ${}^{3}J$ = 5.2 Hz, ${}^{3}J$ = 14.0 Hz, 2H, 2 × CH), 6.08 (br.s, 2H, 2 × CH, Ar), 6.13 (br.s, 2H, 2 × CH, Ar); 13 C NMR (CDCl₃, 150 MHz) δ $30.3 (2 \times CH), 30.5 (2 \times CH_2), 51.4 (2 \times OCH_3), 52.2 (2 \times OCH_3),$ 52.8 (2 × OCH₃), 55.3 (2 × OCH₃), 55.6 (2 × OCH₃), 57.2 (2 × C), 90.4 (2 × CH, Ar), 90.8 (2 × CH, Ar), 113.5 (2 × C, Ar), 159.2 (2 × C, Ar), 159.6 (2 × C, Ar), 160.1 (2 × C, Ar), 170.7 (2 × CO_2Me), 172.8 (2 × CO₂Me). Anal. Calcd for $C_{32}H_{40}O_{14}$: C, 59.25; H, 6.22. Found: C, 59.17; H, 6.30.

Tetraethyl cis-2,5-Bis(3-bromo-2,4,6-trimethoxyphenyl)cyclohexane-1,1,4,4-tetracarboxylate (2c). A solution of 1c (200 mg, 0.464 mmol) in CH₃NO₂ (15 mL) was treated with SnCl₄ (270 mg, 0.12 mL, 1.02 mmol), and the resulting mixture was stirred at 50 °C for 2 h affording 2c (162 mg, 81%) as a white solid: mp 225-226 °C dec; $R_{\rm f}$ 0.50 (diethyl ether); ¹H NMR (CDCl₃, 400 MHz) δ 0.73 (t, ${}^{3}J = 7.1$ Hz, 6H, 2 × CH₃), 1.36 (t, ${}^{3}J = 7.1$ Hz, 6H, 2 × CH₃), 2.23 (dd, ${}^{2}J$ = 13.8 Hz, ${}^{3}J$ = 5.3 Hz, 2H, 2 × CH^aH), 3.33 (dd, ${}^{2}J$ = 13.8 Hz, ${}^{3}J = 13.5$ Hz, 2H, 2 × CH^bH), 3.48–3.66 (m, 2H, OCH₂), 3.65-3.67 (m, 2H, OCH₂), 3.78 (s, 6H, $2 \times OCH_3$), 3.89 (s, 6H, $2 \times$ OCH₃), 3.92 (s, 6H, $2 \times \text{OCH}_3$), 4.20–4.25 (m, 2H, OCH₂), 4.34– 4.39 (m, 2H, OCH₂), 4.78 (dd, ${}^{3}J = 5.3$ Hz, ${}^{3}J = 13.5$ Hz, 2H, 2 × CH), 6.27 (s, 1H, CH, Ar); 13 C NMR (CDCl₃, 100 MHz) δ 13.4 (2 × CH₃), 14.1 (2 × CH₃), 30.5 (2 × CH₂), 31.9 (2 × CH), 54.8 (2 × OCH₃), 56.5 (2 × OCH₃), 58.5 (2 × C), 60.5 (2 × OCH₃), 61.2 (2 × OCH₂), 62.0 (2 × OCH₂), 92.6 (2 × CH, Ar), 98.4 (2 × C, Ar), 119.8 $(2 \times C, Ar)$, 155.8 $(2 \times C, Ar)$, 157.0 $(2 \times C, Ar)$, 158.7 $(2 \times C, Ar)$, 170.0 (2 × CO₂Et), 171.8 (2 × CO₂Et); IR (Nujol, cm⁻¹) 2940, 2875, 1725, 1595, 1465, 1370, 1340, 1220, 1200, 1115, 1055, 975, 930, 810; MS MALDI-TOF m/z calcd for $C_{36}H_{46}Br_2O_{14}$ 860, found $[M]^+$ 860. Anal. Calcd for C36H46Br2O14: C, 50.13; H, 5.38. Found: C, 49.95; H, 5.32.

Tetramethyl cis-2,5-Bis[4-(dimethylamino)phenyl]cyclohexane-1,1,4,4-tetracarboxylate (2d). A solution of 1d (350 mg, 1.264 mmol) in CH_3NO_2 (16 mL) was treated with $SnCl_4$ (400 mg, 0.18 mL, 1.544 mmol), and the resulting mixture was stirred at 55 °C for 3 h affording 2d (266 mg, 76%) as a yellowish solid: mp 123-124 °C; Rf 0.25 (diethyl ether/hexane 1:1); ¹H NMR (CDCl₃, 400 MHz) δ 2.37 (dd, ²J = 14.3 Hz, ³J = 2.8 Hz, 2H, 2 × CH^aH), 2.89 (s, 12H, $4 \times CH_3$), 3.14 (s, 6H, $2 \times OCH_3$), 3.16 (dd, ²J = 14.3 Hz, ${}^{3}J$ = 12.5 Hz, 2H, 2 × CH^bH), 3.63 (dd, ${}^{3}J$ = 2.8 Hz, ${}^{3}J$ = 12.5 Hz, 2H, $2 \times CH$), 3.67 (s, 6H, $2 \times OCH_3$), 6.64 (d, ${}^{3}J$ = 8.8 Hz, 4H, $4 \times CH$, Ar), 7.20 (d, ${}^{3}J$ = 8.8 Hz, 4H, 4 × CH, Ar); ${}^{13}C$ NMR (CDCl₃, 100 MHz) δ 32.9 (2 × CH₂), 39.0 (2 × CH), 40.6 (4 × CH₃), 52.0 (2 × OCH_3), 52.7 (2 × OCH_3), 60.6 (2 × C), 112.0 (4 × CH, Ar), 128.6 $(2 \times C, Ar)$, 129.2 $(4 \times CH, Ar)$, 149.5 $(2 \times C, Ar)$, 170.4 $(2 \times C, Ar)$ CO_2Et), 172.5 (2 × CO_2Et); IR (Nujol, cm⁻¹) 2950, 2880, 1730, 1610, 1525, 1375, 1235, 1170, 1045, 955, 892, 825, 720; MS MALDI-TOF m/z calcd for $C_{30}H_{39}N_2O_8$ 555, found $[M + H]^+$ 555. Anal. Calcd for C30H38N2O8: C, 64.97; H, 6.91; N, 5.05. Found: C, 64.75; H, 7.15; N, 5.09.

Tetraethyl *cis*-2,5-Bis[4-(dimethylamino)phenyl]cyclohexane-1,1,4,4-tetracarboxylate (2e). A solution of 1e (180 mg, 0.60 mmol) in CH₃NO₂ (8 mL) was treated with SnCl₄ (190 mg, 0.085 mL, 0.73 mmol), and the resulting mixture was stirred

at 55 °C for 3 h affording 2e (160 mg, 86%) as a yellowish solid: mp 131-132 °C; Rf 0.30 (diethyl ether/hexane 1:1); ¹H NMR (CDCl₃, 400 MHz) δ 0.78 (t, ³J = 7.1 Hz, 6H, 2 × CH₃), 1.14 (t, ³J = 7.1 Hz, 6H, 2 × CH₃), 2.37 (dd, ${}^{2}J$ = 14.4 Hz, ${}^{3}J$ = 2.8 Hz, 2H, 2 × CH^aH), 2.90 (s, 12H, 2 × NMe₂), 3.18 (dd, ${}^{2}J$ = 14.4 Hz, ${}^{3}J$ = 13.2 Hz, 2H, 2 × $CH^{b}H$), 3.41–3.50 (m, 2H, OCH₂), 3.64–3.72 (m, 4H, 2 × CH, OCH₂), 4.10–4.28 (m, 4H, 2 × OCH₂), 6.63 (d, ${}^{3}J$ = 8.4 Hz, 4H, 4 × CH, Ar), 7.20 (d, ${}^{3}J$ = 8.4 Hz, 4H, 4 × CH, Ar); ${}^{13}C$ NMR (CDCl₃, 100 MHz) δ 13.4 (${}^{1}J_{CH}$ = 125 Hz, 2 × CH₃), 13.9 (${}^{1}J_{CH}$ = 125 Hz, 2 × CH₃), 33.0 (${}^{1}J_{CH}$ = 133 Hz, 2 × CH₂), 39.0 (${}^{1}J_{CH}$ = 130 Hz, 2 × CH), 40.8 (${}^{1}J_{CH}$ = 134 Hz, 4 × CH₃), 60.5 (2 × C), 60.9 (${}^{1}J_{CH}$ = 148 Hz, $2 \times \text{OCH}_2$), 61.4 (¹ J_{CH} = 148 Hz, 2 × OCH₂), 112.2 (¹ J_{CH} = 156 Hz, $4 \times CH$, Ar), 129.2 (2 × C, Ar), 129.3 (${}^{1}J_{CH} = 154$ Hz, 4 × CH, Ar), 149.6 (2 × C, Ar), 170.1 (2 × CO₂Et), 172.1 (2 × CO₂Et); IR (Nujol, cm⁻¹) 2940, 2875, 1725, 1615, 1530, 1375, 1185, 1045, 955, 825; MS MALDI-TOF m/z calcd for $C_{34}H_{46}N_2O_8$ 610, found $[M]^+$ 610. Anal. Calcd for C34H46N2O8: C, 66.86; H, 7.59; N, 4.59. Found: C, 66.75; H, 7.50; N. 4.41.

Tetramethyl cis-2,5-Bis(4-piperidinophenyl)cyclohexane-1,1,4,4-tetracarboxylate (2f). A solution of 1f (200 mg, 0.63 mmol) in CH₃NO₂ (15 mL) was treated with TiCl₄ (290 mg, 0.17 mL, 1.55 mmol), and the resulting mixture was stirred at 50 °C for 3 h affording **2f** (168 mg, 84%) as a yellowish solid: mp 97–98 °C; R_f 0.70 (diethyl ether); $^1\mathrm{H}$ NMR (CDCl_3, 400 MHz) δ 1.50–1.62 (m, 4H, $2 \times CH_2$), 1.64–1.75 (m, 8H, $4 \times CH_2$), 2.42 (dd, ²J = 14.4 Hz, ${}^{3}J$ = 2.7 Hz, 2H, 2 × CH^aH), 3.09–3.14 (m, 8H, 4 × CH₂), 3.14 (s, 6H, 2 × OCH₃), 3.22 (dd, ^{2}J = 14.4 Hz, ^{3}J = 13.1 Hz, 2H, 2 × $CH^{b}H$), 3.64 (dd, ²J = 2.7 Hz, ³J = 13.1 Hz, 2H, CH), 3.68 (s, 6H, 2 × OCH_3), 6.86 (d, ${}^{3}J$ = 8.6 Hz, 4H, 4 × CH, Ar), 7.22 (d, ${}^{3}J$ = 8.6 Hz, 4H, 4 × CH, Ar); ¹³C NMR (CDCl₃, 100 MHz) δ 24.2 (¹ J_{CH} = 124 Hz, 2 × CH₂), 25.8 (${}^{1}J_{CH}$ = 125 Hz, 4 × CH₂), 32.8 (${}^{1}J_{CH}$ = 133 Hz, 2 × CH₂), 39.1 (${}^{1}J_{CH} = 133 \text{ Hz}$, 2 × CH), 50.7 (${}^{1}J_{CH} = 136 \text{ Hz}$, 4 × NCH₂), 52.0 (${}^{1}J_{CH} = 147 \text{ Hz}$, 2 × OCH₃), 52.8 (${}^{1}J_{CH} = 147 \text{ Hz}$, 2 × OCH₃), 60.5 (2 × C), 115.8 (4 × CH, Ar), 129.2 (4 × CH, Ar), 131.1 $(2 \times C, Ar)$, 151.1 $(2 \times C, Ar)$, 170.4 $(2 \times CO_2Me)$, 172.5 $(2 \times CO_2Me)$ CO₂Me); IR (Nujol, cm⁻¹) 3310, 3015, 2965, 2860, 1735, 1445, 1370, 1270, 1230, 1170, 1080, 1000, 960, 935, 892, 800, 744, 690; HRMS MALDI-TOF m/z calcd 634.3254 for $C_{36}H_{46}N_2O_8$, found $[M]^+$ 634.3250. Anal. Calcd for C36H46N2O8: C, 68.12; H, 7.30; N, 4.41. Found: C, 67.95; H, 7.19; N, 4.41.

Tetramethyl cis-2,5-Bis(4-pyrrolidinophenyl)cyclohexane-1,1,4,4-tetracarboxylate (2g). A solution of 1g (200 mg, 0.66 mmol) in CH₃NO₂ (14 mL) was treated with TiCl₄ (300 mg, 0.18 mL, 1.6 mmol), and the resulting mixture was stirred at 60 °C for 2.5 h affording 2g (116 mg, 58%) as a white solid: mp 241–242 °C dec; R_f 0.15 (diethyl ether); ¹H NMR (CDCl₃, 600 MHz) δ 1.97–2.05 (m, 8H, $4 \times CH_2$), 2.42 (dd, ²J = 14.4 Hz, ³J = 2.7 Hz, 2H, $2 \times CH^a$ H), 3.19 (s, 6H, 2 × OCH₃), 3.20 (dd, ${}^{2}J$ = 14.4 Hz, ${}^{3}J$ = 13.2 Hz, 2H, 2 × CH^bH), 3.24–3.30 (m, 8H, 4 × CH₂N), 3.64 (dd, ${}^{3}J$ = 2.7 Hz, ${}^{3}J$ = 13.2 Hz, 2H, 2 × CH), 3.70 (s, 6H, 2 × OCH₃), 6.48 (d, ${}^{3}J$ = 8.6 Hz, 4H, 4 × CH, Ar), 7.21 (d, ${}^{3}J$ = 8.6 Hz, 4H, 4 × CH, Ar); ${}^{13}C$ NMR (CDCl₃, 150 MHz) δ 25.4 (${}^{1}J_{CH}$ = 131 Hz, 4 × CH₂), 33.1 (${}^{1}J_{CH}$ = 133 Hz, 2 × CH₂), 39.1 (${}^{1}J_{CH}$ = 130 Hz, 2 × CH), 47.7 (${}^{1}J_{CH}$ = 139 Hz, $4 \times \text{NCH}_2$), 51.9 (¹ J_{CH} = 147 Hz, 2 × OCH₃), 52.6 (¹ J_{CH} = 147 Hz, 2 \times OCH₃), 60.8 (2 \times C), 111.1 (4 \times CH, Ar), 127.5 (2 \times C, Ar), 129.3 (4 × CH, Ar), 147.0 (2 × C), 170.5 (2 × CO_2Me), 172.6 (2 × CO₂Me); IR (Nujol, cm⁻¹) 2940, 2875, 1725, 1615, 1530, 1470, 1380, 1340, 1260, 1230, 1180, 1120, 1055, 1040, 975, 940, 840, 825, 795, 740; HRMS MALDI-TOF m/z calcd for $C_{34}H_{42}N_2O_8$ 606.2941, found [M]⁺ 606.2946. Anal. Calcd for C₃₄H₄₂N₂O₈: C, 67.31; H, 6.98; N, 4.62. Found: C, 67.29; H, 6.95; N, 4.62.

Tetramethyl *cis*-2,5-Bis(4-morpholinophenyl)cyclohexane-1,1,4,4-tetracarboxylate (2h). A solution of 1h (300 mg, 0.94 mmol) in CH₃NO₂ (14 mL) was treated with TiCl₄ (370 mg, 0.21 mL, 1.97 mmol), and the resulting mixture was stirred at 60 °C for 3 h affording 2h (250 mg, 83%) as a cream-colored solid: mp 249–250 °C dec; R_f 0.80 (CH₂Cl₂/MeOH 20:1); ¹H NMR (CDCl₃, 400 MHz) δ 2.42 (dd, ²J = 14.4 Hz, ³J = 2.7 Hz, 2H, 2 × CH^aH), 3.10–3.13 (m, 8H, 4 × CH₂), 3.14 (s, 6H, 2 × OCH₃), 3.17 (dd, ²J = 14.4 Hz, ³J = 13.1 Hz, 2H, 2 × CH^bH), 3.67 (dd, ³J = 2.7 Hz, ³J = 13.1 Hz, 2H, 2 × CH), 3.69 (s, 6H, 2 × OCH₃), 3.81–3.85 (m, 8H, 4 × CH₂), 6.81 (d, ${}^{3}J$ = 8.7 Hz, 4H, 4 × CH, Ar), 7.24 (d, ${}^{3}J$ = 8.7 Hz, 4H, 4 × CH, Ar); 13 C NMR (CDCl₃, 100 MHz) δ 32.5 (${}^{1}J_{CH}$ = 132 Hz, 2 × CH₂), 38.8 (${}^{1}J_{CH}$ = 130 Hz, 2 × CH), 48.9 (${}^{1}J_{CH}$ = 134 Hz, 4 × NCH₂), 51.4 (${}^{1}J_{CH}$ = 147 Hz, 2 × OCH₃), 52.3 (${}^{1}J_{CH}$ = 147 Hz, 2 × OCH₃), 60.1 (2 × C), 66.4 (${}^{1}J_{CH}$ = 144 Hz, 4 × OCH₂), 114.5 (4 × CH), 129.0 (4 × CH), 131.7 (2 × C), 149.7 (2 × C), 169.8 (2 × CO₂Me), 171.9 (2 × CO₂Me); IR (Nujol, cm⁻¹) 2960, 2880, 1725, 1620, 1525, 1470, 1385, 1275, 1250, 1225, 1130, 1060, 1045, 940, 845, 735; HRMS MALDI-TOF *m*/*z* calcd for C₃₄H₄₂N₂O₁₀ 638.2839, found [M]⁺ 638.2844. Anal. Calcd for C₃₄H₄₂N₂O₁₀: C, 63.94; H, 6.63; N, 4.39. Found: C, 63.94; H, 6.58; N, 4.58.

Tetramethyl cis-2,5-Bis(4-methoxyphenyl)cyclohexane-1,1,4,4-tetracarboxylate (2i). A solution of TiCl₄ (290 mg, 0.17 mL, 0.15 mmol) in CH₃NO₂ (1 mL) was added to a solution of 1i (200 mg, 0.75 mmol) in CH_3NO_2 (7 mL) at -20 °C. The resulting mixture was allowed to warm to 5 °C for 1 h, kept at this temperature for 2 h, and worked up as described above to yield 2i (90 mg, 45%) as colorless crystals: mp 174–175 °C; R_f 0.44 (diethyl ether/hexane 1:1); ¹H NMR (CDCl₃, 400 MHz) δ 2.41 (dd, ²J = 14.4 Hz, ³J = 2.8 Hz, 2H, 2 × CH^{*a*}H), 3.15 (s, 6H, 2 × OCH₃), 3.19 (dd, ²J = 14.4 Hz, ³J = 13.2 Hz, 2H, 2 × CH^bH), 3.68 (dd, ${}^{3}J$ = 2.8 Hz, ${}^{3}J$ = 13.2 Hz, 2H, 2 × CH), 3.71 (s, 6H, 2 × OCH₃), 3.79 (s, 6H, 2 × OCH₃), 6.82 (d, ${}^{3}J$ = 8.7 Hz, 4H, 4 × CH, Ar), 7.28 (d, ${}^{3}J$ = 8.7 Hz, 4H, 4 × CH, Ar); ${}^{13}C$ NMR (CDCl₃, 100 MHz) δ 32.9 (2 × CH₂), 39.1 (2 × CH), 52.0 $(2 \times \text{OCH}_3)$, 52.9 $(2 \times \text{OCH}_3)$, 55.2 $(2 \times \text{OCH}_3)$, 60.5 $(2 \times \text{C})$, 113.2 (4 \times CH, Ar), 129.7 (4 \times CH, Ar), 132.7 (2 \times C, Ar), 158.4 $(2 \times C, Ar)$, 170.3 $(2 \times CO_2Me)$, 172.4 $(2 \times CO_2Me)$; IR (Nujol, cm⁻¹) 2950, 2860, 1720, 1610, 1520, 1465, 1380, 1135, 1040, 935, 850, 745; GC-MS *m*/*z* 528 (85) [M]⁺, 347 (94), 265 (72), 207 (80), 145 (94), 134 (100), 121 (45); MS MALDI-TOF m/z calcd for C₂₈H₃₂O₁₀ 528, found [M]⁺ 528. Anal. Calcd for C₂₈H₃₂O₁₀: C, 63.63; H, 6.10. Found: C, 63.75; H, 6.15.

Tetraethyl cis-2,5-Bis(4-methoxyphenyl)cyclohexane-1,1,4,4-tetracarboxylate (2j). AlCl₃ (150 mg, 1.1 mmol) was added in one portion to a solution of 1j (130 mg, 0.45 mmol) in CH_3NO_2 (9 mL) at -20 °C. The resulting mixture was allowed to warm to room temperature for 1 h, kept at this temperature for 1 h, and worked up as described above to yield 2i (80 mg, 62%) as colorless crystals: mp 105–106 °C; R_f 0.21 (diethyl ether/hexane 1:1); ¹H NMR (CDCl₃, 400 MHz) δ 0.78 (t, ³J = 7.1 Hz, 6H, 2 × CH₃), 1.15 (t, ${}^{3}J$ = 7.1 Hz, 6H, 2 × CH₃), 2.39 (dd, ${}^{2}J$ = 14.4 Hz, ${}^{3}J$ = 2.9 Hz, 2H, 2 × CH^aH), 3.17 (dd, ${}^{2}J$ = 14.4 Hz, ${}^{3}J$ = 12.7 Hz, 2H, 2 × CH^bH), 3.43-3.48 (m, 2H, OCH₂), 3.63-3.71 (m, 2H, OCH₂), 3.77 (s, 6H, 2 × OCH₂), 3.78 (dd, ${}^{3}J$ = 2.9 Hz, ${}^{3}J$ = 12.7 Hz, 2H, 2 × CH), 4.09–4.26 (m, 4H, 2 × OCH₂), 6.79 (d, ${}^{3}J$ = 8.8 Hz, 4H, 4 × CH, Ar), 7.28 (d, ${}^{3}J$ = 8.8 Hz, 4H, 4 × CH, Ar); ${}^{13}C$ NMR (CDCl₃, 100 MHz) δ 13.4 (2 × CH₂), 13.9 (2 × CH₂), 33.1 (2 × CH₂), 39.1 (2 × CH), 55.2 $(2 \times \text{OCH}_3)$, 60.3 $(2 \times \text{C})$, 61.0 $(2 \times \text{OCH}_2)$, 61.6 $(2 \times \text{OCH}_2)$, 113.1 (4 × CH, Ar), 129.8 (4 × CH, Ar), 133.2 (2 × C, Ar), 158.4 $(2 \times C_1 \text{ Ar})$, 169.9 $(2 \times CO_2 \text{Et})$, 171.9 $(2 \times CO_2 \text{Et})$; IR (Nujol, cm⁻¹) 2955, 1720, 1615, 1520, 1460, 1380, 1130, 1115, 1055, 870, 850; MS MALDI-TOF m/z calcd for $C_{32}H_{40}O_{10}$ 584, found $[M]^+$ 584. Anal. Calcd for C32H40O10: C, 65.74; H, 6.90. Found: C, 65.60; H, 6.93.

Tetraethyl (5*E*)-3,6-Bis(2,4,6-trimethoxyphenyl)hex-5-ene-1,1,4,4-tetracarboxylate (3a). AlCl₃ (70 mg, 0.53 mmol) was added in one portion to a solution of 1a (180 mg, 0.51 mmol) in CH₂Cl₂ at -50 °C (10 mL). The resulting mixture was warmed to -25 °C and kept at this temperature for 1 h, and then it was warmed up to 5 °C, kept at this temperature for additional 22 h, and worked up as described above to yield 3a (126 mg, 70%) as a colorless oil: R_f 0.54 (diethyl ether); ¹H NMR (CDCl₃, 400 MHz) δ 1.12 (t, ³J = 7.1 Hz, 3H, CH₃), 1.20 (t, ³J = 7.1 Hz, 3H, CH₃), 1.27 (t, ³J = 7.1 Hz, 3H, CH₃), 1.31 (t, ³J = 7.1 Hz, 3H, CH₃), 2.55 (ddd, ²J = 13.6 Hz, ³J = 3.6 Hz, ³J = 8.8 Hz, 1H, CH^aH), 2.82 (ddd, ²J = 13.6 Hz, ³J = 5.6 Hz, ³J = 12.1 Hz, 1H, CH^bH), 3.07 (dd, ³J = 5.6, ³J = 8.8 Hz, 1H, CH), 3.52 (s, 3H, OCH₃), 3.78 (s, 3H, OCH₃), 3.83–3.96 (m, 2H, OCH₂), 4.05 (dq, ²J = 10.8 Hz, ³J = 7.1 Hz, 1H, OCH₂), 4.12–4.27 (m, 4H, OCH₂), 4.34 (dq, ²J = 10.6 Hz, ³J = 7.1 Hz, 1H, OCH₂), 4.43 (dd, ³*J* = 3.6 Hz, ³*J* = 12.1 Hz, 1H, CH), 5.96 (d, ⁴*J* = 2.5 Hz, 1H, Ar), 6.02 (d, ⁴*J* = 2.5 Hz, 1H, Ar), 6.04 (s, 2H, Ar), 6.45 (d, ³*J* = 17.3 Hz, 1H, CH=), 6.77 (d, ³*J* = 17.3 Hz, 1H, CH=); ¹³C NMR (CDCl₃, 100 MHz) δ 13.9 (2 × CH₃), 14.1 (2 × CH₃), 28.9 (CH₂), 39.3 (CH), 51.5 (CH), 54.9 (OCH₃), 55.1 (OCH₃), 55.2 (OCH₃), 55.4 (OCH₃), 55.5 (2 × OCH₃), 60.6 (OCH₂), 60.8 (OCH₂), 60.9 (2 × OCH₂), 64.0 (C), 90.1 (CH), 90.3 (CH), 90.5 (2 × CH), 107.2 (C), 108.1 (C), 120.0 (CH), 129.1 (CH), 159.2 (2 × C), 159.6 (C), 160.08 (C), 160.14 (C), 160.5 (C), 169.5 (CO₂Et), 170.1 (CO₂Et), 170.5 (CO₂Et), 172.9 (CO₂Et); IR (Nujol, cm⁻¹) 2960, 2860, 1730, 1600, 1470, 1380; MS MALDI-TOF *m*/*z* calcd for C₃₆H₄₈O₁₄ 704, found [M]⁺ 704. Anal. Calcd for C₃₆H₄₈O₁₄: C, 61.35; H, 6.86. Found: C, 61.44: H, 6.75.

Tetramethyl (5*E*)-3,6-Bis(2,4,6-trimethoxyphenyl)hex-5-ene-1,1,4,4-tetracarboxylate (3b). Method A. BF₃·OEt₂ (78 mg, 0.07 mL, 0.55 mmol) was added in one portion to a solution of 1b (150 mg, 0.46 mmol) in CH_2Cl_2 (8 mL) at room temperature. The resulting mixture was heated under reflux for 6 h and worked up as described above to yield 3b (128 mg, 85%).

Method B. ZnCl₂ (300 mg, 2.2 mmol) was added in one portion to a solution of 1b (180 mg, 0.55 mmol) in CH₂Cl₂ (7 mL). The resulting mixture was heated under reflux for 6 h and worked up as described above to yield 3b (154 mg, 86%): colorless foam; mp 70-71 °C; $R_f 0.48$ (diethyl ether); ¹H NMR (CDCl₃, 400 MHz) δ 2.53 (ddd, ${}^{2}J = 13.6$ Hz, ${}^{3}J = 3.5$ Hz, ${}^{3}J = 8.4$ Hz, 1H, CH^aH), 2.78 (ddd, ${}^{2}J =$ 13.6 Hz, ${}^{3}I = 6.2$ Hz, ${}^{3}I = 12.2$ Hz, 1H, CH^bH), 3.12 (dd, ${}^{3}I = 6.2$ Hz, ³*J* = 8.4 Hz, 1H, CH), 3.43 (s, 3H, OCH₃), 3.52 (s, 3H, OCH₃), 3.62 (s, 3H, OCH₃), 3.65 (s, 6H, 2 × OCH₃), 3.69 (s, 3H, OCH₃), 3.71 (s, 3H, OCH₃), 3.75 (s, 3H, OCH₃), 3.76 (s, 3H, OCH₃), 3.78 (s, 3H, OCH₃), 4.37 (dd, ${}^{3}J$ = 3.5 Hz, ${}^{3}J$ = 12.2 Hz, 1H, CH), 5.96 (d, ${}^{4}J$ = 2.3 Hz, 1H, CH, Ar), 6.01 (d, ${}^{4}J$ = 2.3 Hz, 1H, CH, Ar), 6.02 (s, 2H, $2 \times CH$, Ar), 6.38 (d, ${}^{3}J = 17.0$ Hz, 1H, CH=), 6.70 (d, ${}^{3}J = 17.0$ Hz, 1H, CH=); 13 C NMR (CDCl₃, 100 MHz) δ 29.0 (CH₂), 39.4 (CH), 51.3 (CH), 51.9 (OCH₃), 52.0 (OCH₃), 52.2 (2 × OCH₃), 55.0 (OCH₃), 55.1 (OCH₃), 55.2 (OCH₃), 55.5 (OCH₃), 55.6 (2 × OCH₃), 64.3 (C), 90.2 (CH), 90.4 (CH), 90.7 (2 × CH), 106.9 (C), 108.0 (C), 120.1 (CH=), 128.8 (CH=), 159.2 $(2 \times C)$, 159.8 (C), 160.0 (C), 160.3 (C), 160.4 (C), 169.8 (CO₂Me), 170.2 (CO₂Me), 171.1 (CO₂Me), 171.4 (CO₂Me); IR (Nujol, cm⁻¹) 2940, 2870, 1730, 1605, 1470, 1380, 1335, 1240, 1205, 1160, 1130, 1070, 1030, 960, 820, 730; MS MALDI-TOF m/z calcd for $C_{32}H_{40}O_{14}$ 648, found $[M]^+$ 648. Anal. Calcd for C32H40O14: C, 59.25; H, 6.22. Found: C, 59.30; H, 6.39

Tetraethyl (5E)-3,6-Bis(3-bromo-2,4,6-trimethoxyphenyl)hex-5-ene-1,1,4,4-tetracarboxylate (3c). A solution of SnCl₄ (216 mg, 0.097 mL, 0.83 mmol) in CH₂Cl₂ (1 mL) was added to a solution of 1c (180 mg, 0.42 mmol) in CH₂Cl₂ (8 mL) at -20 °C. The resulting mixture was kept at -20 °C for 20 h, warmed to room temperature, and worked up as described above to yield 3c (136 mg, 75%) as a colorless solid: mp 107–108 °C; R_f 0.55 (diethyl ether); ¹H NMR (CDCl₃, 600 MHz) δ 1.11 (t, ³J = 7.2 Hz, 3H, CH₃), 1.20 (t, ${}^{3}J$ = 7.2 Hz, 3H, CH₃), 1.23 (t, ${}^{3}J$ = 7.2 Hz, 3H, CH₃), 1.31 (t, ${}^{3}J$ = 7.2 Hz, 3H, CH₃), 2.55 (ddd, ${}^{2}J$ = 14.0 Hz, ${}^{3}J$ = 6.5 Hz, ${}^{3}J$ = 4.0 Hz, 1H, $CH^{a}H$), 2.73 (ddd, ²J = 14.0 Hz, ³J = 7.0 Hz, ³J = 11.6 Hz, 1H, CH^bH), 3.18 (dd, ${}^{3}J$ = 6.5 Hz, ${}^{3}J$ = 7.0 Hz, 1H, CH), 3.63 (s, 3H, OCH₃), 3.64 (s, 3H, OCH₃), 3.72 (s, 3H, OCH₃), 3.74 (s, 3H, OCH₃), 3.76-3.80 (m, 2H, OCH₂), 3.85-3.93 (m, 2H, OCH₂), 3.86 (s, 3H, OCH₃), 3.87 (s, 3H, OCH₃), 4.11–4.17 (m, 3H, OCH₂), 4.30 $(dq, {}^{2}J = 9.0 Hz, {}^{3}J = 7.2 Hz, 1H, OCH_{2}), 4.39 (dd, {}^{3}J = 11.6 Hz, {}^{3}J =$ 4.0 Hz, 1H, CH), 6.22 (s, 1H, CH, Ar), 6.23 (s, 1H, CH, Ar), 6.28 (d, ${}^{3}J = 17.1$ Hz, 1H, CH=), 6.73 (d, ${}^{3}J = 17.1$ Hz, 1H, CH=); ${}^{13}C$ NMR (CDCl₃, 150 MHz) δ 13.5 (2 × CH₃), 13.7 (2 × CH₃), 29.1 (CH₂), 41.1 (CH), 50.7 (CH), 54.6 (OCH₃), 55.0 (OCH₃), 55.9 (2 × OCH₃), 60.1 (OCH₃), 60.4 (OCH₃), 60.5 (OCH₂), 60.6 (OCH₂), 60.8 (OCH₂), 61.0 (OCH₂), 64.2 (C), 91.7 (CH), 92.1 (CH), 97.5 (C), 98.0 (C), 113.1 (C), 114.4 (C), 120.2 (CH), 131.2 (CH), 155.6 (C), 156.0 (C), 156.3 (C), 157.6 (C), 157.8 (C), 158.9 (C), 168.9 (CO2Et), 169.3 (CO2Et), 169.8 (CO2Et), 170.2 (CO2Et); IR (Nujol, cm⁻¹) 2940, 2870, 1730, 1600, 1475, 1380, 1320, 1120, 1025, 925, 815, 730; MS MALDI-TOF m/z calcd for C₃₆H₄₆Br₂O₁₄ 860, found

 $[M]^+$ 860. Anal. Calcd for $C_{36}H_{46}Br_2O_{14}$: C, 50.13; H, 5.38. Found C, 49.95; H, 5.49.

Dimethyl 6-Methoxy-1-(3-methoxy-2-(methoxycarbonyl)-3oxopropyl)-4-(4-methoxyphenyl)-3,4-dihydronaphtalene-2,2-(1H)-dicarboxylate (7a). A solution of SnCl₄ (260 mg, 0.12 mL, 1.0 mmol) in CH_3NO_2 (1 mL) was added to a solution of 1i (260 mg, 1.00 mmol) in C_6H_6 (13 mL) at room temperature, and the resulting mixture was stirred for 24 h affording 7a (210 mg, 81%, dr 91:9). (1RS,4RS)-7a (major isomer): white crystals; mp 72-73 °C; Rf 0.28 (diethyl ether/hexane 1:1); ¹H NMR (CDCl₃, 400 MHz) δ 2.02 (ddd, $^{2}J = 13.6 \text{ Hz}, ^{3}J = 5.1 \text{ Hz}, ^{3}J = 10.6 \text{ Hz}, 1\text{H}, \text{CH}_{2}), 2.12 \text{ (ddd, } ^{2}J = 13.6 \text{ Hz})$ Hz, ${}^{3}J = 3.0$ Hz, ${}^{3}J = 10.3$ Hz, 1H, CH₂), 2.34 (dd, ${}^{2}J = 14.4$ Hz, ${}^{3}J =$ 11.9 Hz, 1H, CH₂), 2.75 (ddd, ${}^{2}J$ = 14.4 Hz, ${}^{3}J$ = 7.2 Hz, ${}^{4}J$ = 1.5 Hz, 1H, CH₂), 3.44 (ddd, ${}^{3}J$ = 3.0 Hz, ${}^{3}J$ = 10.6 Hz, ${}^{4}J$ = 1.5 Hz, 1H, CH), 3.60 (dd, ${}^{3}J$ = 5.1 Hz, ${}^{3}J$ = 10.3 Hz, 1H, CH(CO₂Me)₂), 3.61 (s, 3H, OCH₃), 3.64 (s, 3H, OCH₃), 3.66 (s, 3H, OCH₃), 3.79 (s, 3H, OCH_3), 3.80 (s, 3H, OCH_3), 3.84 (s, 3H, OCH_3), 3.90 (dd, ${}^{3}J = 7.2$ Hz, ${}^{3}J = 11.9$ Hz, 1H, CH), 6.35 (d, ${}^{4}J = 2.7$ Hz, 1H, CH, Ar), 6.73 $(dd, {}^{3}J = 8.6 \text{ Hz}, {}^{4}J = 2.7 \text{ Hz}, 1\text{H}, \text{CH}, \text{Ar}), 6.86 (br.d, {}^{3}J = 8.6 \text{ Hz}, 2\text{H},$ $2 \times$ CH, Ar), 7.09–7.11 (m, 3H, $3 \times$ CH, Ar); ¹³C NMR (CDCl₃, 100 MHz) δ 33.2 (CH₂), 33.9 (CH₂), 40.1 (CH), 42.8 (CH), 49.5 $(CH(CO_2Me)_2)$, 52.7 (OCH_3) , 52.8 $(3 \times OCH_3)$, 55.2 (OCH_3) , 55.3 (OCH_3) , 58.6 (C), 112.3 (CH, Ar), 114.1 (2 × CH, Ar), 115.2 (CH, Ar), 129.6 (2 × CH, Ar), 129.9 (C, Ar), 130.3 (CH, Ar), 137.8 (C, Ar), 138.5 (C, Ar), 158.3 (2 \times C, Ar), 169.4 (CO₂Me), 169.5 (CO₂Me), 170.3 (CO₂Me), 170.5 (CO₂Me); IR (Nujol, cm⁻¹) 2960, 2870, 1735, 1610, 1515, 1470, 1360, 1055, 845, 740; GC-MS m/z 528 (96) [M]⁺, 362 (32), 347 (100), 265 (72), 207 (63), 145 (72), 134 (70), 121 (25); MS MALDI-TOF *m*/*z* calcd for C₂₈H₃₂O₁₀ 528, found [M]⁺ 528. Anal. Calcd for C₂₈H₃₂O₁₀: C, 63.63; H, 6.10. Found: C, 63.81; H, 6.21.

Diethyl 1-[3-Ethoxy-2-(ethoxycarbonyl)-3-oxopropyl]-6-methoxy-4-(4-methoxyphenyl)-3,4-dihydronaphthalene-2,2(1H)dicarboxylate (7b). A solution of SnCl₄ (260 mg, 0.12 mL, 1.0 mmol) in CH₃NO₂ (1 mL) was added to a solution of 1j (290 mg, 1.0 mmol) in CH₃NO₂ (13 mL) at -25 °C. The resulting mixture was warmed to room temperature for 3 h and worked up as described above to yield 7b (240 mg, 80%, dr 90:10). (1RS,4RS)-7b (major isomer): colorless oil; R_f 0.31 (diethyl ether/hexane 1:1); ¹H NMR $(\text{CDCl}_3, 400 \text{ MHz}) \delta 1.13 \text{ (t, } {}^3J = 7.1 \text{ Hz}, 3\text{H}, \text{CH}_3), 1.23 \text{ (t, } {}^3J = 7.1 \text{ Hz}, 3\text{H}, \text{CH}_3)$ Hz, 3H, CH₃), 1.30 (t, ³*J* = 7.1 Hz, 3H, CH₃), 1.36 (t, ³*J* = 7.1 Hz, 3H, CH₃), 2.03 (ddd, ${}^{2}J$ = 13.7 Hz, ${}^{3}J$ = 4.7 Hz, ${}^{3}J$ = 10.9 Hz, 1H, CH₂), 2.17 (ddd, ${}^{2}J$ = 13.7 Hz, ${}^{3}J$ = 3.2 Hz, ${}^{3}J$ = 10.3 Hz, 1H, CH₂), 2.34 (dd, ${}^{2}J = 14.4$ Hz, ${}^{3}J = 11.9$ Hz, 1H, CH₂), 2.75 (ddd, ${}^{2}J = 14.4$ Hz, ${}^{3}J = 7.2$ Hz, ${}^{4}J = 1.5$ Hz, 1H, CH₂), 3.50 (ddd, ${}^{3}J = 3.2$ Hz, ${}^{3}J = 10.9$ Hz, ${}^{4}J =$ 1.5 Hz, 1H, CH), 3.55 (dd, ${}^{3}J = 4.7$ Hz, ${}^{3}J = 10.3$ Hz, 1H, CH(CO₂Me)₂), 3.62 (s, 3H, OCH₃), 3.81 (s, 3H, OCH₃), 3.92 (dd, ${}^{3}I = 7.2$ Hz, ${}^{3}I = 11.9$ Hz, 1H, CH), 4.05–4.17 (m, 4H, OCH₂), 4.18– 4.37 (m, 4H, OCH₂), 6.36 (d, ${}^{4}J$ = 2.7 Hz, 1H, CH, Ar), 6.73 (dd, ${}^{3}J$ = 8.6 Hz, ${}^{4}J$ = 2.7 Hz, 1H, CH, Ar), 6.86 (br.d, ${}^{3}J$ = 8.6 Hz, 2H, 2 × CH, Ar), 7.09–7.11 (m, 3H, 3 × CH, Ar); 13 C NMR (CDCl₃, 100 MHz) δ 13.9 (CH₃), 14.0 (2 × CH₃), 14.2 (CH₃), 33.2 (CH₂), 33.7 (CH₂), 39.9 (CH), 42.8 (CH), 49.7 (CH(CO₂Et)₂), 55.0 (OCH₃), 55.3 (OCH_3) , 58.6 (C), 61.4 (OCH_2) , 61.5 $(2 \times OCH_2)$, 61.8 (OCH_2) , 112.2 (CH, Ar), 114.1 (2 × CH, Ar), 115.0 (CH, Ar), 129.6 (2 × CH, Ar), 130.2 (C, Ar), 130.5 (CH, Ar), 138.1 (C, Ar), 138.6 (C, Ar), 158.3 (2 \times C, Ar), 169.1 (CO₂Et), 169.2 (CO₂Et), 169.9 (CO₂Et), 170.1 (CO₂Et); IR (Nujol, cm⁻¹) 2990, 1740, 1610, 1510, 1470, 1380, 1050, 870, 850; HRMS MALDI-TOF m/z calcd for $C_{32}H_{40}O_{10}$ 584.2621, found [M]⁺ 584.2618. Anal. Calcd for C₃₂H₄₀O₁₀: C, 65.74; H, 6.90. Found: C, 65.84; H, 7.08.

Dimethyl 4-(3,4-dimethoxyphenyl)-6,7-dimethoxy-1-(3-methoxy-2-(methoxycarbonyl)-3-oxopropyl)-3,4-dihydronaphtalene-2,2(1*H*)-dicarboxylate (7c). A solution of SnCl₄ (318 mg, 0.14 mL, 1.22 mmol) in CH₃NO₂ (1 mL) was added to a solution of 1k (300 mg, 1.02 mmol) in CH₃NO₂ (14 mL) at -25 °C. The resulting mixture was kept at -25 °C for 22 h, warmed to room temperature, and worked up as described above to yield 7c (210 mg, 71%, dr 55:45) as colorless oil: R_f 0.44 (diethyl ether/methanol 20:1); ¹H NMR (CDCl₃, 400 MHz) for mixture of diastereomers δ 1.98– 2.17 (m, 2H+2H, CH₂, A + B), 2.29-2.36 (m, 1H, CH₂, A), 2.58-2.67 (ddd, ${}^{2}J$ = 14.6 Hz, ${}^{3}J$ = 3.2 Hz, ${}^{4}J$ = 1.1 Hz, 1H, CH₂, **B**), 2.77 $(ddd, {}^{2}I = 14.6 \text{ Hz}, {}^{3}I = 7.2 \text{ Hz}, {}^{4}I = 1.3 \text{ Hz}, 1\text{H}, C\text{H}_{2}, \text{A}), 2.91 (dd, 10.1 \text{ Hz})$ ${}^{2}I = 14.6 \text{ Hz}, {}^{3}I = 8.7 \text{ Hz}, 1\text{H}, \text{CH}_{2}, \text{B}), 3.17 (s, 3\text{H}, \text{OCH}_{2}, \text{A}), 3.41 -$ 3.46 (m, 1H+1H, CH, A, B), 3.52 (dd, ${}^{3}J$ = 10.2 Hz, ${}^{3}J$ = 5.1 Hz, 1H, CH, B), 3.63 (s, 3H, OCH₃, B), 3.65 (s, 3H, OCH₃, B), 3.66 (s, 3H, OCH₃, A), 3.67 (s, 3H, OCH₃, A), 3.68 (s, 3H, OCH₃, B), 3.72-3.75 (m, 1H, CH, A), 3.77 (s, 3H, OCH₃, B), 3.80 (s, 3H, OCH₃, B), 3.81 (s, 3H, OCH₃, A), 3.83 (s, 3H, OCH₃, A), 3.84 (s, 3H, OCH₃, B), 3.85 (s, 3H, OCH₃, A), 3.86 (s, 3H, OCH₃, B), 3.89-3.92 (m, 1H, CH, A), 3.90 (s, 3H, OCH₃, A), 3.94 (s, 3H, OCH₃, B), 3.96 (s, 3H, OCH_3 , A), 4.27 (dd, ${}^{3}J = 3.2$ Hz, ${}^{3}J = 8.7$ Hz, 1H, CH, B), 6.32 (s, 1H, CH, Ar, **B**), 6.39 (s, 1H, CH, Ar, **A**), 6.46 (dd, ${}^{3}J$ = 8.3 Hz, ${}^{4}J$ = 2.0 Hz, 1H, CH, Ar, **B**), 6.58 (d, ${}^{4}J$ = 2.0 Hz, 1H, CH, Ar, **B**), 6.68 (s, 1H+1H, CH, Ar, **A** + **B**), 6.74 (d, ${}^{3}J$ = 8.3 Hz, 1H, CH, Ar, **B**), 6.75 (d, ${}^{3}J$ = 8.3 Hz, 1H, CH, Ar, A), 6.79 (s, 1H, CH, Ar, A), 6.84 (d, ³*J* = 8.3 Hz, 1H, CH, Ar, A); ¹³C NMR (CDCl₃, 100 MHz) for mixture of diastereomers δ 32.1 (CH₂, **A**), 33.0 (CH₂, **A**), 33.3 (CH₂, **B**), 33.7 (CH₂, **B**), 40.5 (CH, **A**), 40.7 (2 × CH, **A**, **B**), 42.6 (CH, **B**), 49.8 (CH, B), 49.9 (CH, A), 52.1 (OCH₃), 52.57 (2 × OCH₃), 52.64 (OCH_3) , 52.68 $(2 \times OCH_3)$, 52.81 (OCH_3) , 52.84 (OCH_3) , 55.56 (OCH_3) , 55.61 (OCH_3) , 55.68 $(2 \times OCH_3)$, 55.76 $(2 \times OCH_3)$, $55.81 (2 \times \text{OCH}_3), 57.1 (C, B), 58.5 (C, A), 110.6 (CH, A), 111.1$ (CH, B), 111.3 (CH, B), 111.6 $(2 \times CH, A + B)$, 112.1 (CH, A), 112.5 (CH, B), 113.0 (CH, A), 120.5 (CH, B), 121.0 (CH, A), 127.8 (C, A), 128.7 (C, B), 129.5 (C, B), 129.7 (C, A), 138.7 (2 × C, A, B), 147.1 (2 × C, A), 147.3 (C, B), 147.6 (2 × C, A, B), 147.8 (C, B), 148.5 (C, A), 149.1 (C, B), 169.16 (CO₂Me, B), 169.22 (CO₂Me, A), 169.4 (CO₂Me, A), 169.5 (CO₂Me, B), 170.2 (CO₂Me, B), 170.3 (CO₂Me, B), 170.6 (CO₂Me, A), 170.8 (CO₂Me, A); IR (Nujol, cm⁻¹) 2950, 2870, 1735, 1520, 1470, 1380, 1250, 1160, 1035, 820, 730; MS MALDI-TOF m/z calcd for $C_{30}H_{36}O_{12}Na$ 601, found [M + Na]⁺ 601. Anal. Calcd for C₃₀H₃₆O₁₂: C, 61.22; H, 6.16. Found: C, 61.51; H, 6.28.

Dimethyl 9-(2",3"-Dihydro-1",4"-benzodioxin-6"-yl)-6-[3'methoxy-2'-(methoxycarbonyl)-3'-oxopropyl]-2,3,8,9tetrahydronaphtho[2,3-b][1,4]dioxine-7,7(6H)-dicarboxylate (7d). A solution of $SnCl_4$ (318 mg, 0.14 mL, 1.22 mmol) in $C_2H_5NO_2$ (1 mL) was added to a solution of 11 (210 mg, 0.82 mmol) in $C_2H_5NO_2$ (13 mL) at -40 °C. The resulting mixture was allowed to warm to room temperature during 3 h and worked up as described above to yield 7d (85 mg, 40%, dr 57:43) as colorless oil. R_f 0.17 (hexane/ethyl acetate 2:1); (6RS,9RS)-7d (major isomer): ¹H NMR (CDCl₃, 600 MHz) δ 2.03 (ddd, ²*J* = 13.7 Hz, ³*J*_{1',2'} = 4.6 Hz, ³*J*_{1',6} = 10.9 Hz, 1H, C(1')H₂), 2.16 (ddd, ²*J* = 13.7 Hz, ³*J*_{1',6} = 3.0 Hz, ³*J*_{1',2'} = 10.5 Hz, 1H, $C(1')H_2$), 2.57 (ddd, ²J = 14.8 Hz, ³J_{8,9} = 5.0 Hz, ⁴J_{8,6} = 0.9 Hz, 1H, $C(8)H_2$), 2.86 (dd, ²J = 14.8 Hz, ³J_{8,9} = 9.0 Hz, 1H, C(8)H₂), 3.34-3.36 (m, 1H, C(6)H), 3.36 (s, 3H, OCH₃), 3.50 (dd, ${}^{3}J_{2',1'} = 4.6$ Hz, ${}^{3}J_{2',1'} = 10.5$ Hz, 1H, C(2')H), 3.65 (s, 3H, OCH₃), 3.74 (s, 3H, OCH₃), 3.82 (s, 3H, OCH₃), 4.09 (br. dd, ${}^{3}J_{9,8} = 5.0$ Hz, ${}^{3}J_{9,8} =$ 9.0 Hz, 1H, C(9)H), 4.16–4.24 (m, 8H, CH₂O), 6.31 (d, ${}^{4}J_{10,9} = 0.7$ Hz, 1H, C(10)H), 6.55 (dd, ${}^{3}J = 8.3$ Hz, ${}^{4}J = 2.2$ Hz, 1H, C(7")H), 6.58 (d, ${}^{4}J$ = 2.2 Hz, 1H, C(5")H), 6.70 (s, 1H, C(5)H), 6.76 (d, ${}^{3}J$ = 8.3 Hz, 1H, C(8")H); ¹³C NMR (CDCl₃, 150 MHz) δ 31.2 (CH₂), 33.8 (CH₂), 40.0 (CH), 41.2 (CH), 49.9 (CH), 52.4 (OCH₃), 52.6 (OCH₃), 52.7 (OCH₃), 52.8 (OCH₃), 57.2 (OCH₂), 60.4 (C), 64.3 (OCH_2) , 64.4 $(2 \times OCH_2)$, 116.9 (CH, Ar), 117.1 (CH, Ar), 117.3 (CH, Ar), 118.1 (CH, Ar), 121.9 (CH, Ar), 130.3 (C, Ar), 130.4 (C, Ar), 139.2 (C, Ar), 141.8 (C, Ar), 142.0 (C, Ar), 142.4 (C, Ar), 143.2 (C, Ar), 169.4 (CO₂Me), 169.5 (CO₂Me), 170.8 (CO₂Me), 170.9 (CO₂Me). (6RS,9SR)-7d (minor isomer): ¹H NMR (CDCl₃, 600 MHz) δ 1.99 (ddd, ²*J* = 13.7 Hz, ³*J*_{1',2'} = 4.8 Hz, ³*J*_{1',6} = 10.5 Hz, 1H, C(1')H₂), 2.08 (ddd, ²*J* = 13.7 Hz, ³*J*_{1',6} = 3.0 Hz, ³*J*_{1',2'} = 10.5 Hz, 1H, $C(1')H_2$, 2.28 (dd, ²J = 14.4 Hz, ³J_{8,9} = 12.1 Hz, 1H, C(8)H₂), 2.69 $(ddd, {}^{2}J = 14.4 \text{ Hz}, {}^{3}J_{8,9} = 7.1 \text{ Hz}, {}^{4}J_{8,6} = 1.6 \text{ Hz}, 1\text{H}, C(8)\text{H}_{2}), 3.32-3.33 (m, 1\text{H}, C(6)\text{H}), 3.64 (dd, {}^{3}J_{2',1'} = 4.8 \text{ Hz}, {}^{3}J_{2',1'} = 10.5 \text{ Hz}, 1\text{H}, 10.5 \text{ Hz}, 10.5 \text{$ C(2')H), 3.66 (s, 3H, CH₃), 3.68 (s, 3H, CH₃), 3.70-3.71 (m, 1H, C(9)H), 3.78 (s, 3H, CH₃), 3.83 (s, 3H, CH₃), 4.16-4.24 (m, 8H, CH₂O), 6.34 (d, ${}^{4}J$ = 0.7 Hz, 1H, C(10)H), 6.64 (dd, ${}^{3}J$ = 8.2 Hz, ${}^{4}J$ = 2.1 Hz, 1H, C(7'')H, 6.65 (d, ⁴J = 2.1 Hz, 1H, C(5'')H), 6.66 (s, 1H,

C(5)H), 6.80 (d, ³*J* = 8.2 Hz, 1H, C(8")H); ¹³C NMR (CDCl₃, 150 MHz) δ 33.0 (CH₂), 33.8 (CH₂), 40.5 (CH), 42.3 (CH), 49.5 (CH), 52.63 (OCH₃), 52.67 (OCH₃), 52.72 (OCH₃), 52.85 (OCH₃), 58.6 (OCH₂), 58.9 (C), 64.3 (OCH₂), 64.4 (2 × OCH₂), 116.9 (CH, Ar), 117.2 (CH, Ar), 117.7 (CH, Ar), 118.4 (CH, Ar), 121.4 (CH, Ar), 129.9 (C, Ar), 130.8 (C, Ar), 139.2 (C, Ar), 141.8 (C, Ar), 142.2 (C, Ar), 142.5 (C, Ar), 143.5 (C, Ar), 169.3 (CO₂Me), 169.5 (CO₂Me), 170.3 (CO₂Me), 170.4 (CO₂Me); IR (Nujol, cm⁻¹) 2945, 2865, 1735, 1595, 1510, 1475, 1380, 1300, 1220, 1085, 900, 825, 755, 735; MS MALDI-TOF *m*/*z* calcd for C₃₀H₃₂O₁₂Na 607, found [M + Na]⁺ 607. Anal. Calcd for C₃₀H₃₂O₁₂: C, 61.64; H, 5.52. Found: C, 61.53; H, 5.75.

Dimethyl 7-(3-Methoxy-2-(methoxycarbonyl)-3-oxopropyl)-4-(thiophene-2-yl)-4,5-dihydrobenzo[b]thiophene-6,6(7H)-dicarboxylate (7e). A solution of $SnCl_4$ (260 mg, 0.12 mL, 1.00 mmol) in CH₃NO₂ (1 mL) was added to a solution of 1m (200 mg, 0.83 mmol) in CH₃NO₂ (13 mL) at -20 °C. The resulting mixture was heated to 50 °C within 0.5 h, stirred at this temperature for 0.5 h, and worked up as described above to yield 7e (156 mg, 78%, dr 71:29) as a colorless oil: $R_f 0.46$ (CH₂Cl₂). (4RS,7RS)-7e (major isomer): ¹H NMR (CDCl₃, 600 MHz) δ 2.23–2.29 (m, 2H, CH₂), 2.64 (dd, ²J = 14.3 Hz, ${}^{3}J = 5.3$ Hz, 1H, CH₂), 2.86 (dd, ${}^{2}J = 14.3$ Hz, ${}^{3}J = 6.9$ Hz, 1H, CH₂), 3.33 (s, 3H, OCH₃), 3.57 (dd, ${}^{3}J = 6.1$ Hz, ${}^{3}J = 6.6$ Hz, 1H, CH), 3.73 (s, 3H, OCH₃), 3.76 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 3.81-3.83 (m, 1H, CH(CO₂Me)₂), 4.47 (dd, ³J = 5.3 Hz, ³J = 6.9 Hz, 1H, CH), 6.52 (br. d, ${}^{3}I$ = 3.5 Hz, 1H, CH, Th), 6.74 (d, ${}^{3}I$ = 5.2 Hz, 1H, CH, Th), 6.83 (dd, ${}^{3}J$ = 3.5 Hz, ${}^{3}J$ = 5.1 Hz, 1H, CH, Th), 7.12 $(d, {}^{3}J = 5.2 \text{ Hz}, 1\text{H}, \text{CH}, \text{Th}), 7.16 (dd, {}^{3}J = 5.1 \text{ Hz}, {}^{4}J = 1.0 \text{ Hz}, 1\text{H},$ CH, Th); ¹³C NMR (CDCl₃, 150 MHz) δ 32.9 (CH₂), 35.2 (C(4)H), 36.3 (C(5)H₂), 38.3 (C(7)H), 50.4 (CH(CO₂Me)₂), 52.4 (OCH₃), 52.66 (OCH₃), 52.69 (OCH₃), 52.70 (OCH₃), 58.0 (C), 122.8 (CH, Th), 124.0 (CH, Th), 125.4 (CH, Th), 126.2 (CH, Th), 127.8 (CH, Th), 134.7 (C, Th), 138.1 (C, Th), 148.2 (C, Th), 169.2 (CO₂Me), 169.3 (CO₂Me), 169.7 (CO₂Me), 170.1 (CO₂Me). (4RS,7SR)-7e (minor isomer): ¹H NMR (CDCl₃, 600 MHz) δ 2.06 (ddd, ²J = 13.9 Hz, ${}^{3}J = 4.6$ Hz, ${}^{3}J = 10.3$ Hz, 1H, CH₂), 2.13 (ddd, ${}^{2}J = 13.9$ Hz, ${}^{3}J = 13.9$ Hz, ${}$ 3.3 Hz, ${}^{3}J = 10.7$ Hz, 1H, CH₂), 2.43 (dd, ${}^{2}J = 14.4$ Hz, ${}^{3}J = 11.3$ Hz, 1H, CH₂), 2.90 (ddd, ${}^{2}J$ = 14.4 Hz, ${}^{3}J$ = 6.6 Hz, ${}^{4}J$ = 1.0 Hz, 1H, CH₂), 3.68 (s, 3H, OCH₃), 3.71 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 3.80-3.82 (m, 1H, CH), 3.83 (s, 3H, OCH₃), 3.83-3.85 (m, 1H, CH), 4.18 (dd, ${}^{3}J$ = 6.6 Hz, ${}^{3}J$ = 11.3 Hz, 1H, CH) 6.65 (d, ${}^{3}J$ = 5.1 Hz, 1H, CH, Th), 6.90 (br.d, ${}^{3}J$ = 3.5 Hz, 1H, CH, Th), 6.95 (dd, ${}^{3}J$ = 3.5 Hz, ${}^{3}J$ = 5.2 Hz, 1H, CH, Th), 7.07 (d, ${}^{3}J$ = 5.2 Hz, 1H, CH, Th), 7.18 (br. d, ${}^{3}J$ = 5.1 Hz, 1H, CH, Th); ${}^{13}C$ NMR (CDCl₃, 150 MHz) δ 33.4 (CH₂), 33.9 (C(5)H₂), 36.0 (CH), 37.0 (C(7)H), 49.9 (CH(CO₂Me)₂), 52.69 (OCH₃), 52.70 (OCH₃), 52.95 (OCH₃), 52.97 (OCH₃), 59.8 (C), 123.4 (CH, Th), 123.9 (CH, Th), 124.6 (CH, Th), 126.7 (CH, Th), 127.4 (CH, Th), 135.9 (C, Th), 137.0 (C, Th), 147.8 (C, Th), 169.1 (CO₂Me), 169.3 (CO₂Me), 169.7 (CO₂Me), 170.1 (CO₂Me); IR (film, cm⁻¹) 2955, 2870, 1745, 1440, 1250, 1160, 1080, 925, 850, 800, 715; HRMS MALDI-TOF m/z calcd for $C_{22}H_{24}O_8S_2$ 480.0913, found $[M]^+$ 480.0950. Anal. Calcd for C22H24O8S2: C, 54.99; H, 5.03. Found: C, 54.85; H, 5.15.

Dimethyl 7-(3-Methoxy-2-(methoxycarbonyl)-3-oxopropyl)-2-methyl-4-(5-methylthiophene-2-yl)-4,5-dihydrobenzo[b]thiophene-6,6(7H)- dicarboxilate (7f). A solution of SnCl₄ (260 mg, 0.12 mL, 1.00 mmol) in CH₃NO₂ (1 mL) was added to a solution of 1n (200 mg, 0.79 mmol) in CH₃NO₂ (9 mL) at -20 °C. The resulting mixture was kept at -20 °C for 6 h, warmed to room temperature, and worked up as described above to yield 7f (130 mg, 54%, dr 56:44) as a yellow oil: $R_f 0.25-0.35$ (diethyl ether/hexane 1:1). (4RS,7RS)-7f (major isomer): ¹H NMR (CDCl₃, 400 MHz) δ 2.20–2.29 (m, 2H, CH₂), 2.38 (br. s, 3H, Me), 2.41 (d, ${}^{4}J$ = 0.9 Hz, 3H, Me), 2.56 (dd, ${}^{2}J$ = 14.2 Hz, ${}^{3}J$ = 5.6 Hz, 1H, CH₂), 2.78 (dd, ${}^{2}J$ = 14.2 Hz, ${}^{3}J = 6.8$ Hz, 1H, CH₂), 3.40 (s, 3H, OCH₃), 3.45 (dd, ${}^{3}J = 6.1$ Hz, ${}^{3}J = 6.3$ Hz, 1H, CH), 3.74 (s, 3H, OCH₃), 3.75 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃), 3.80-3.86 (m, 1H, CH(CO₂Me)₂), 4.28 (dd, ${}^{3}J = 5.6$ Hz, ${}^{3}J = 6.8$ Hz, 1H, CH), 6.34 (d, ${}^{3}J = 3.3$ Hz, 1H, Th), 6.39 $(d, {}^{4}J = 0.9 \text{ Hz}, 1\text{H}, \text{Th}), 6.48 (dd, {}^{3}J = 3.3, {}^{4}J = 1.0 \text{ Hz}, 1\text{H}, \text{Th}); {}^{13}\text{C}$ NMR (CDCl₃, 100 MHz) δ 15.3 (2 × CH₃), 32.8 (CH₂), 35.3

(C(4)H), 36.3 $(C(5)H_2)$, 38.3 (C(7)H), 50.4 $(CH(CO_2Me)_2)$, 52.3 (OCH_3) , 52.7 $(3 \times OCH_3)$, 59.6 (C), 125.1 (CH, Th), 125.2 (CH, Th), 125.9 (CH, Th), 134.5 (C, Th), 135.4 (C, Th), 136.9 (C, Th), 138.3 (C, Th), 145.7 (C, Th), 169.3 ($2 \times CO_2Me$), 170.2 (CO_2Me), 170.3 (CO₂Me); (4RS,7SR)-7f (minor isomer): ¹H NMR (CDCl₃, 400 MHz) δ 1.99–2.13 (m, 2H, CH₂), 2.34 (d, ⁴J = 0.9 Hz, 3H, Me), 2.43 (d, ${}^{4}J$ = 0.9 Hz, 3H, Me), 2.41–2.46 (m, 1H, CH₂), 2.82 (dd, ${}^{2}J$ = 14.2 Hz, ${}^{3}J = 6.5$ Hz, 1H, CH₂), 3.57 (dd, ${}^{3}J = 3.0$, ${}^{3}J = 9.8$ Hz, 1H, CH), 3.69 (s, 3H, OCH₃), 3.72 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃), 3.83 (s, 3H, OCH₃), 3.80-3.86 (m, 1H, CH(CO₂Me)₂), 4.00 (dd, ${}^{3}I = 6.5$ Hz, ${}^{3}I = 10.9$ Hz, 1H, CH), 6.31 (d, ${}^{4}I = 0.9$ Hz, 1H, Th), 6.58 $(dd, {}^{3}J = 3.3 Hz, {}^{4}J = 0.9 Hz, 1H, Th), 6.68 (d, {}^{3}J = 3.3 Hz, 1H, Th);$ ¹³C NMR (CDCl₃, 100 MHz) δ 15.3 (CH₃), 15.4 (CH₃), 33.4 (CH₂), 33.7 (C(5)H₂), 36.3 (CH), 36.8 (C(7)H), 49.9 (CH(CO₂Me)₂), 52.6 (OCH₃), 52.7 (OCH₃), 52.9 (OCH₃), 53.0 (OCH₃), 58.0 (C), 124.3 (CH, Th), 124.5 (CH, Th), 125.5 (CH, Th), 134.3 (C, Th), 135.7 (C, Th), 137.7 (C, Th), 138.3 (C, Th), 145.7 (C, Th), 169.27 (CO₂Me), 169.32 (CO_2Me), 169.8 (2 × CO_2Me); IR (Nujol, cm⁻¹) 2965, 2930, 2869, 1740, 1660, 1460, 1380, 1255, 1087, 1054, 800; GC-MS m/z 508 (12) [M]⁺, 376 (38), 317 (354), 281 (49), 207 (100), 191 (10). Anal. Calcd for C₂₄H₂₈O₈S₂: C, 56.68; H, 5.55. Found: C, 56.43; H, 5.45

Dimethyl 5,6,7-Trimethoxy-1-[3-methoxy-2-(methoxycarbonyl)-3-oxopropyl]-4-(3,4,5-trimethoxyphenyl)-3,4-dihydronaphthalene-2,2(1H)-dicarboxylate (7g). A solution of $SnCl_4$ (193 mg, 0.086 mL, 0.74 mmol) in CH_3NO_2 (1 mL) was added to a solution of 10 (200 mg, 0.62 mmol) in CH₃NO₂ (6 mL) at room temperature. The resulting mixture was heated to 60 °C, stirred at this temperature for 3 h, and worked up as described above to yield 7g (50 mg, 21%, dr 72:28) and 9a (130 mg, 65%, dr 54:46). (1RS,4RS)-7g (major isomer): colorless oil, R_f 0.50 (diethyl ether); ¹H NMR $(CDCl_3, 400 \text{ MHz}) \delta 2.09-2.14 \text{ (m, 2H, CH}_2), 2.19 \text{ (dd, }^2 I = 14.8$ Hz, ${}^{3}J = 10.4$ Hz, 1H, CH₂), 2.91 (dd, ${}^{2}J = 14.8$ Hz, ${}^{3}J = 8.8$ Hz, 1H, CH₂), 3.21 (s, 3H, OCH₃), 3.43 (dd, ${}^{3}J$ = 8.6 Hz, ${}^{3}J$ = 9.0 Hz, 1H, CH), 3.61 (s, 3H, OCH₃), 3.63 (s, 3H, OCH₃), 3.66-3.70 (m, 1H, CH), 3.75 (s, 3H, OCH₃), 3.78 (s, 3H, OCH₃), 3.79 (s, 6H, 2 × OCH₃), 3.82 (s, 3H, OCH₃), 3.85 (s, 3H, OCH₃), 3.90 (s, 3H, OCH₃), 4.07 (dd, ${}^{3}J$ = 8.8 Hz, ${}^{3}J$ = 10.4 Hz, 1H, CH), 6.35 (s, 2H, 2 × CH, Ar), 6.46 (s, 1H, CH, Ar); ¹³C NMR (CDCl₃, 100 MHz) δ 33.1 $(^{1}J = 130 \text{ Hz}, \text{CH}_{2}), 33.2 (^{1}J = 132 \text{ Hz}, \text{CH}_{2}), 39.4 (^{1}J = 130 \text{ Hz}, \text{CH}),$ 41.7 (${}^{1}J$ = 138 Hz, CH), 49.9 (${}^{1}J$ = 132 Hz, CH(CO₂Me)₂), 52.6 (${}^{1}J$ = 148 Hz, CO_2CH_3), 52.7 (¹J = 148 Hz, CO_2CH_3), 52.8 (¹J = 148 Hz, CO_2CH_3), 52.9 (¹J = 148 Hz, CO_2CH_3), 55.6 (¹J = 144 Hz, OCH_3), 56.1 (¹J = 144 Hz, 2 × OCH_3), 58.6 (C), 59.6 (¹J = 144 Hz, OCH_3), 60.4 (¹*J* = 145 Hz, OCH₃), 60.9 (¹*J* = 146 Hz, OCH₃), 103.9 (¹*J* = 157 Hz, 2 × CH, Ar), 107.8 (¹J = 158 Hz, CH, Ar), 122.6 (C, Ar), 133.2 (C, Ar), 136.1 (C, Ar), 141.4 (C, Ar), 144.4 (C, Ar), 152.2 (C, Ar), 152.5 (C, Ar), 153.3 (2 \times C, Ar), 169.2 (CO₂Me), 169.5 (CO₂Me), 169.9 (CO₂Me), 170.1 (CO₂Me); IR (Nujol, cm⁻¹) 2970, 2855, 1745, 1602, 1505, 1480, 1366, 1245, 1120, 1007, 875; HRMS MALDI-TOF m/z calcd for C₃₂H₄₀O₁₄ 648.2412, found [M]⁺ 648.2418. Anal. Calcd for C₃₂H₄₀O₁₄: C 59.25; H, 6.22. Found: C, 59.23, H, 6.38.

Tetramethyl (1RS,3aSR,5aRS,9aSR)-1-(4-Methoxyphenyl)-7oxo-3a,4,6,7-tetrahydro-1H-cyclopenta[c]indene-3,3,5,5-(2H,5aH)-tetracarboxylate (8). A solution of SnCl₄ (287 mg, 0.13 mL, 1.1 mmol) in C_6H_6 (1 mL) was added to a solution of 1i (200 mg, 0.76 mmol) in C_6H_6 (10 mL) at 40 °C, and the resulting mixture was kept at this temperature for 2 h affording 7a (120 mg, 59%, dr 90:10) and 8 (60 mg, 30%). 8: colorless crystals; mp 159-160 °C; R_f 0.40 (diethyl ether); ¹H NMR (600 MHz, $CDCl_3$) 0.78 (dd, ²J = 18.7 Hz, ${}^{3}J = 7.8$ Hz, 1H, C(6)H₂), 1.34 (dd, ${}^{2}J = 12.5$ Hz, ${}^{3}J = 10.6$ Hz, 1H, $C(4)H_2$, 2.30 (br.d, ²J = 18.7 Hz, 1H, $C(6)H_2$), 2.36 (ddd, ²J = 12.8 Hz, ${}^{3}J = 4.6$ Hz, ${}^{4}J = 1.0$ Hz, 1H, C(2)H₂), 2.57 (dd, ${}^{2}J = 12.5$ Hz, ${}^{3}J =$ 8.6 Hz, 1H, C(4)H₂), 2.84 (br.d, ${}^{3}J$ = 7.8 Hz, 1H, C(5a)H), 2.89 (dd, $^{2}J = 12.8 \text{ Hz}, ^{3}J = 14.6, \text{ Hz}, 1\text{H}, C(2)\text{H}_{2}), 2.94 \text{ (dd, }^{3}J = 14.6 \text{ Hz}, ^{3}J = 14.6$ 4.6 Hz, 1H, C(1)H), 3.47 (s, 3H, OCH₃), 3.64–3.67 (m, 1H, C(3a)H), 3.69 (s, 3H, OCH₃), 3.78 (s, 3H, OCH₃), 3.79 (s, 3H, OCH_3), 3.80 (s, 3H, OCH_3), 5.86 (d, ${}^{3}J$ = 10.3 Hz, 1H, C(8)H), 6.84 $(d, {}^{3}J = 7.8 \text{ Hz}, 2H, C(3')H, C(5')H), 6.95 (dd, {}^{3}J = 10.3 \text{ Hz}, {}^{4}J = 1.7$ Hz, 1H, C(9)H), 7.13 (br.d, ${}^{3}J$ = 7.8 Hz, 2H, C(2')H, C(6')H); ${}^{13}C$

NMR (150 MHz, CDCl₃) 33.9 (C(2)H₂), 34.0 (C(6)H₂), 35.5 (C(4)H₂), 45.7 (C(5a)H), 48.7 (C(1)H), 51.9 (CH₃), 52.1 (C(3a)H), 52.3 (CH₃), 52.4 (CH₃), 52.8 (CH₃), 53.6 (C(9a)), 54.8 (CH₃), 61.7 (C), 61.9 (C), 114.3 (C(3')H, C(5')H), 127.1 (C(8)H), 127.8 (C(1')), 128.4 (C(2')H, C(6')H), 154.5 (C(9)H), 158.8 (C(4')), 169.6 (CO₂Me), 170.1 (CO₂Me), 170.3 (CO₂Me), 171.9 (CO₂Me), 195.8 (C(7)). Anal. Calcd for $C_{27}H_{30}O_{10}$: C 63.03; H, 5.88. Found: C, 63.23, H, 5.94.

Tetramethyl 2,2'-[(1,2,3,5,6,7-Hexamethoxy-9,10-dihydroanthracene-9,10-diyl)di(methylene)]dimalonate (9a). A solution of SnCl₄ (339 mg, 0.15 mL, 1.3 mmol) in CH₃NO₂ (1 mL) was added to a solution of 10 (210 mg, 0.65 mmol) in CH₃NO₂ (12 mL) at -20 °C. The resulting mixture was heated to 50 °C, stirred at this temperature for 1 h, and worked up as described above to yield (9RS,10SR)-9a (93 mg, 44%) and (9RS,10RS)-9a (67 mg, 32%): dr 58:42. (9RS,10SR)-9a (major isomer): white crystals; mp 214-215 °C; R_{f} 0.42 (diethyl ether); ¹H NMR (CDCl₃, 600 MHz) δ 2.47 (ddd, ${}^{2}J = 14.2$ Hz, ${}^{3}J = 5.8$ Hz, ${}^{3}J = 4.7$ Hz, 2H, 2 × CH^aH), 2.63 (dd, ${}^{3}J =$ 5.8 Hz, ${}^{3}J$ = 6.8 Hz, 2H, 2 × CH), 2.86 (ddd, ${}^{2}J$ = 14.2 Hz, ${}^{3}J$ = 6.8 Hz, ${}^{3}J = 3.8$ Hz, 2H, 2 × CH^bH), 3.39 (s, 6H, OCH₃), 3.45 (s, 6H, OCH_3), 3.90 (s, 12H, OCH_3), 4.01 (s, 6H, OCH_3), 4.45 (dd, ${}^{3}J = 3.8$ Hz, ${}^{3}J = 4.7$ Hz, 2H, 2 × CH), 6.61 (s, 2H, 2 × CH, Ar); ${}^{13}C$ NMR $(\text{CDCl}_3, 150 \text{ MHz}) \delta 36.1 (2 \times \text{CHAr}), 37.9 (2 \times \text{CH}_2), 47.6 (2 \times \text{CH}_2)$ $CH(CO_2Me)_2$), 52.2 (4 × OCH₃), 55.9 (4 × OCH₃), 60.7 (2 × OCH_3 , 106.2 (2 × CH, Ar), 121.9 (2 × C, Ar), 131.6 (2 × C, Ar), 140.7 (2 × C, Ar), 150.9 (2 × C, Ar), 152.5 (2 × C, Ar), 169.79 (2 × CO_2Me), 169.84 (2 × CO_2Me); IR (Nujol, cm⁻¹) 2970, 2855, 1745, 1602, 1505, 1480, 1366, 1245, 1120, 1007, 875. Anal. Calcd for C₃₂H₄₀O₁₄: C, 59.25; H, 6.22. Found: C, 59.23; H, 6.33. (9RS,10RS)-9a (minor isomer): colorless oil; Rf 0.58 (diethyl ether); ¹H NMR $(CDCl_3, 600 \text{ MHz}) \delta 2.21-2.34 \text{ (m, 4H, } 2 \times CH_2), 3.66 \text{ (dd, }^3J = 7.3 \text{ (m, 4H, } 2 \times CH_2), 3.66 \text{ (dd, } 3) \text{ (m, 4H, } 2 \times CH_2), 3.66 \text{ (dd, } 3) \text{ (m, 4H, } 2 \times CH_2), 3.66 \text{ (dd, } 3) \text{ (m, 4H, } 2 \times CH_2), 3.66 \text{ (dd, } 3) \text{ (m, 4H, } 2 \times CH_2), 3.66 \text{ (dd, } 3) \text{ (m, 4H, } 2 \times CH_2), 3.66 \text{ (dd, } 3) \text{ (m, 4H, } 3$ Hz, ${}^{3}J = 8.1$ Hz, 2H, 2 × CH), 3.75 (s, 6H, 2 × OCH₃), 3.78 (s, 6H, $2 \times OCH_3$, 3.88 (s, 6H, $2 \times OCH_3$), 3.90 (s, 6H, $2 \times OCH_3$), 3.92 (s, $6H_1 2 \times OCH_3$, 4.17 (dd, ${}^{3}J = 6.9$ Hz, ${}^{3}J = 8.5$ Hz, 2H, 2 × CH), 6.77 (s, 2H, Ar); ¹³C NMR (CDCl₃, 150 MHz) δ 37.6 (2 × CHAr), 39.3 $(2 \times CH_2)$, 50.2 $(2 \times CH(CO_2Me)_2)$, 52.4 $(2 \times OCH_3)$, 52.5 $(2 \times CH_2)$ OCH_3), 55.6 (2 × OCH_3), 56.0 (2 × OCH_3), 60.7 (2 × OCH_3), 107.9 $(2 \times CH, Ar)$, 124.6 $(2 \times C, Ar)$, 134.8 $(2 \times C, Ar)$, 140.3 $(2 \times C, Ar)$ Ar), 150.7 (2 \times C, Ar), 152.1 (2 \times C, Ar), 169.6 (2 \times CO₂Me), 170.1 $(2 \times CO_2Me)$. Anal. Calcd for $C_{32}H_{40}O_{14}$: C, 59.25; H, 6.22. Found: C, 59.34; H, 6.35.

Tetramethyl 2,2'-[(1,3,5,7-Tetramethoxy-9,10-dihydroanthracene-9,10-diyl)di(methylene)]dimalonate (9b). Sn(OTf)₂ (14 mg, 0.034 mmol) was added to a solution of 1p (100 mg, 0.340 mmol) in CH₃NO₂ (3.4 mL) at room temperature. The resulting mixture was heated up to 60 °C, stirred at this temperature for 4 h, and worked up as described above to yield 9b (80 mg, 80%, dr 64:36). (9RS,10SR)-9b (major isomer): colorless crystals; mp 124–125 °C; R_f 0.4 (diethyl ether); ¹H NMR (CDCl₃, 600 MHz) $\overline{\delta}$ 2.42 (ddd, ²J = 14.1 Hz, ${}^{3}J = 5.1$ Hz, ${}^{3}J = 3.7$ Hz, 2H, 2 × CH^aH), 2.67 (dd, ${}^{3}J = 5.1$ Hz, ${}^{3}J = 8.0$ Hz, 2H, 2 × CH), 2.98 (ddd, ${}^{2}J = 14.1$ Hz, ${}^{3}J = 8.0$ Hz, ³*J* = 3.9 Hz, 2H, 2 × CH^{*b*}H), 3.34 (s, 6H, 2 × OCH₃), 3.46 (s, 6H, 2 × OCH_3), 3.83 (s, 6H, 2 × OCH_3), 3.87 (s, 6H, 2 × OCH_3), 4.48 (dd, ${}^{3}J = 3.7$ Hz, ${}^{3}J = 3.9$ Hz, 2H, 2 × CH), 6.34 (d, ${}^{4}J = 2.4$ Hz, 2H, 2 × CH, Ar), 6.44 (d, ${}^{4}J$ = 2.4 Hz, 2H, 2 × CH, Ar); ${}^{13}C$ NMR (CDCl₃, 150 MHz) δ 35.7 (¹J_{CH} = 133 Hz, 2 × CHAr), 36.6 (¹J_{CH} = 132 Hz, $2 \times CH_2$, 47.5 (${}^{1}J_{CH}$ = 129 Hz, $2 \times CH(CO_2Me)_2$), 52.2 ($4 \times OCH_3$), 55.3 (4 × OCH₃), 97.2 (2 × CH, Ar), 103.2 (2 × CH, Ar), 117.0 (2 × C, Ar), 138.4 $(2 \times C, Ar)$, 157.9 $(2 \times C, Ar)$, 159.2 $(2 \times C, Ar)$, 169.9 $(2 \times CO_2Me)$, 170.1 $(2 \times CO_2Me)$. Anal. Calcd for $C_{30}H_{36}O_{12}$: C, 61.22; H, 6.16. Found: C, 60.95; H, 5.97. (9RS,10RS)-9b (minor isomer): colorless oil; R_f 0.66 (diethyl ether); ¹H NMR (CDCl₃, 600 MHz) δ 2.24 (ddd, ²J = 13.9 Hz, ³J = 7.1 Hz, ³J = 8.2 Hz, 2H, 2 × CH^aH), 2.37 (ddd, ${}^{2}J$ = 13.9 Hz, ${}^{3}J$ = 7.1 Hz, ${}^{3}J$ = 8.1 Hz, 2H, 2 × CH^bH), 3.66 (dd, ${}^{3}J$ = 7.1 Hz, ${}^{3}J$ = 8.1 Hz, 2H, 2 × CH), 3.72 (s, 6H, $2 \times OCH_3$, 3.78 (s, 12H, $4 \times OCH_3$), 3.85 (s, 6H, $2 \times OCH_3$), 4.26 $(dd, {}^{3}J = 7.1 Hz, {}^{3}J = 8.2 Hz, 2H, 2 \times CH), 6.35 (d, {}^{4}J = 2.3 Hz, 2H,$ 2 × CH, Ar), 6.57 (d, ${}^{4}J$ = 2.3 Hz, 2H, 2 × CH, Ar); ${}^{13}C$ NMR (CDCl₃, 150 MHz) δ 37.1 (¹J_{CH} = 131 Hz, 2 × CHAr), 38.8 (¹J_{CH} = 134 Hz, $2 \times CH_2$, 50.3 (¹ $J_{CH} = 133 \text{ Hz}, 2 \times CH(CO_2Me)_2$), 52.4 (2 × OCH₃),

52.5 (2 × OCH₃), 55.2 (2 × OCH₃), 55.4 (2 × OCH₃), 96.7 (2 × CH, Ar), 104.6 (2 × CH, Ar), 119.5 (2 × C, Ar), 142.2 (2 × C, Ar), 157.4 (2 × C, Ar), 159.2 (2 × C, Ar), 169.7 (2 × CO₂Me), 170.2 (2 × CO₂Me); IR (Nujol, cm⁻¹) 3000, 2955, 2840, 1735, 1610, 1585, 1489, 1456, 1437, 1346, 1327, 1262, 1200, 1145, 1107, 1055, 1025, 831; MS MALDI-TOF *m*/*z* calcd for $C_{30}H_{36}O_{12}$ 588, found [M]⁺ 588. Anal. Calcd for $C_{30}H_{36}O_{12}$: C, 61.22; H, 6.16. Found: C, 60.99; H, 6.01.

Tetramethyl 2,2'-[(1,2,5,6-Tetramethoxy-9,10-dihydroanthracene-9,10-diyl)di(methylene)]dimalonate (9c). Sn(OTf), (14 mg, 0.034 mmol) was added to a solution of 1q (100 mg, 0.340 mmol) in CH₃NO₂ (3.4 mL) at room temperature. The resulting mixture was heated to 100 $^\circ\text{C},$ stirred at this temperature for 4 h, and worked up as described above to yield 9c (66 mg, 66%, dr 90:10). (9RS,10SR)-9c (major isomer): colorless crystals; mp 153–154 °C; R_f 0.5 (diethyl ether); H NMR (CDCl₃, 400 MHz) δ 2.44 (ddd, ²J = 14.1 Hz, ${}^{3}J = 4.7$ Hz, ${}^{3}J = 6.3$ Hz, 2H, 2 × CH^aH), 2.65 (dd, ${}^{3}J = 6.3$ Hz, ${}^{3}I = 6.9$ Hz, 2H, 2 × CH), 2.98 (ddd, ${}^{2}I = 14.1$ Hz, ${}^{3}I = 6.9$ Hz, ${}^{3}I = 3.9$ Hz, 2H, 2 × CH^bH), 3.36 (s, 6H, 2 × OCH₃), 3.42 (s, 6H, 2 × OCH₃), 3.88 (s, 6H, 2 × OCH₃), 3.96 (s, 6H, 2 × OCH₃), 4.57 (dd, ${}^{3}J$ = 3.9 Hz, ${}^{3}J$ = 4.7 Hz, 2H, 2 × CH), 6.90 (d, ${}^{3}J$ = 8.7 Hz, 2H, 2 × CH, Ar), 7.06 (d, ${}^{3}J$ = 8.7 Hz, 2H, 2 × CH, Ar); ${}^{13}C$ NMR (CDCl₃, 100 MHz) δ 35.8 (2 × CHAr), 38.1 (2 × CH₂), 47.8 (2 × $CH(CO_2Me)_2$), 52.1 (2 × OCH₃), 52.2 (2 × OCH₃), 55.9 (2 × OCH₃), 60.6 (2 × OCH₃), 112.0 (2 × CH, Ar), 123.6 (2 × CH, Ar), 129.4 (2 × C, Ar), 130.0 (2 × C, Ar), 146.2 (2 × C, Ar), 150.8 (2 × C, Ar), 169.6 ($2 \times CO_2Me$), 169.8 ($2 \times CO_2Me$); IR (Nujol, cm⁻¹) 2945, 2865, 1735, 1725, 1602, 1500, 1470, 1295, 1220, 1105, 1088, 1042, 1000, 830; MS MALDI-TOF m/z calcd for $C_{30}H_{36}O_{12}$ 588, found [M]⁺ 588. Anal. Calcd for C₃₀H₃₆O₁₂: C, 61.22; H, 6.16. Found: C, 61.32; H, 6.18.

Arylidenemalonates were synthesized according to the reported procedures.^{64,65} All compounds, except 10a-c, were described earlier.

Dimethyl 2-(4-Piperidinobenzylidene)malonate (10a). Condensation of 4-(piperidin-1-yl)benzaldehyde (2.0 g, 10.5 mmol) with dimethyl malonate (1.40 g, 10.6 mmol) in benzene (20 mL) in the presence of piperidine (0.04 mL, 0.6 mmol) and acetic acid (0.12 mL, 2.2 mmol) yielded 10a (2.9 g, 91%) as a yellow solid: mp 96–97 °C (from ethyl acetate/hexane 1:1); ¹H NMR (CDCl₃, 400 MHz) δ 1.59-1.75 (m, 6H), 3.25-3.49 (m, 4H), 3.83 (s, 3H, CH₃O), 3.89 (s, 3H, CH₃O), 6.84 (d, ${}^{3}I$ = 8.9 Hz, 2H, 2 × CH, Ar), 7.32 (d, ${}^{3}I$ = 8.9 Hz, 2H, 2 \times CH, Ar), 7.67 (s, 1H, CH); ^{13}C NMR (CDCl_3, 150 MHz) δ 23.3 (CH₂), 26.0 (2 × CH₂), 47.7 (2 × NCH₂), 52.4 (OCH_3) , 52.5 (OCH_3) , 114.3 $(2 \times CH, Ar)$, 121.3 (C), 123.2 (C), 131.5 (2 × CH, Ar), 142.8 (CH=), 152.7 (C), 165.1 (CO₂Me), 167.9 (CO_2Me) ; IR (Nujol, cm⁻¹) 2965, 2870, 1730, 1605, 1522, 1460, 1387, 1280, 1230, 1180, 1130, 928, 827, 770, 740; GC-MS m/z 304 (17), 303 (100) [M]⁺, 272 (28), 212 (15), 184 (15), 156 (10), 129 (17), 115 (10), 102 (12), 59 (52). Anal. Calcd for C₁₇H₂₁NO₄: C, 67.31; H, 6.98; N, 4.62. Found: C, 67.58; H, 6.96; N, 4.80.

Dimethyl 2-[(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)methylene]malonate (10b). Condensation of [1,4]benzodioxane-6-carbaldehyde (2.0 g, 12.2 mmol) with dimethyl malonate (1.61 g, 12.2 mmol) in benzene (20 mL) in the presence of piperidine (0.12 mL, 1.22 mmol) and acetic acid (0.35 mL, 6.1 mmol) yielded 10b (3.2 g, 95%) as a white solid: mp 82-83 °C (from ethyl acetate/hexane 1:1); ¹H NMR (CDCl₃, 600 MHz) δ 3.73 (s, 3H, CH₃O), 3.78 (s, 3H, CH₃O), 4.08-4.10 (m, 2H, CH₂O), 4.12-4.14 (m, 2H, CH₂O), 6.77 $(d, {}^{3}J = 8.4 \text{ Hz}, 1\text{H}, \text{CH}, \text{Ar}), 6.86 (dd, {}^{3}J = 8.4 \text{ Hz}, {}^{4}J = 2.2 \text{ Hz}, 1\text{H},$ CH, Ar), 6.89 (d, ${}^{4}J$ = 2.2 Hz, 1H, CH, Ar), 7.56 (s, 1H, CH=); ${}^{13}C$ NMR (CDCl₃, 150 MHz) δ 52.5 (OCH₃), 52.6 (OCH₃), 64.1 (OCH₂), 64.6 (OCH₂), 117.7 (CH, Ar), 118.5 (CH, Ar), 123.4 (C), 123.8 (CH, Ar), 126.1 (C), 142.4 (CH=), 143.6 (C), 146.1 (C), 164.7 (CO₂Me), 167.4 (CO₂Me); GC-MS m/z 278 (100) [M]⁺, 247 (28), 218 (58), 189 (14), 179 (49), 160 (38), 76 (16), 59 (27); IR (Nujol, cm⁻¹) 2950, 2875, 1720, 1640, 1615, 1580, 1505, 1470, 1440, 1380, 1320, 1300, 1250, 1170, 1140, 1000, 980, 960, 940, 920, 895, 880, 845, 780, 730, 720. Anal. Calcd for C₁₄H₁₄O₆: C, 60.43; H, 5.07. Found: C, 60.55; H, 5.18.

Dimethyl 2-(3,5-Dimethoxybenzylidene)malonate (10c). Condensation of 3,5-dimethoxybenzaldehyde (0.5 g, 3.0 mmol) with

dimethyl malonate (0.4 g, 3.0 mmol) in benzene (6 mL) in the presence of piperidine (0.03 mL, 0.3 mmol) and acetic acid (0.09 mL, 1.5 mmol) yielded **10c** (0.72 g, 85%) as white solid: mp 68–69 °C. ¹H NMR (CDCl₃, 600 MHz) δ 3.80 (s, 6H, 2 × CH₃O), 3.87 (s, 6H, 2 × CH₃O), 6.52 (t, ⁴J = 2.2 Hz, 1H, CH, Ar), 6.60 (d, ⁴J = 2.2 Hz, 2H, 2 × CH, Ar), 7.72 (s, 1H, CH=); ¹³C NMR (CDCl₃, 150 MHz) δ 52.6 (2 × OCH₃), 55.4 (2 × OCH₃), 103.2 (CH, Ar), 107.2 (2 × CH, Ar), 126.0 (C), 134.5 (C), 142.8 (CH=), 161.0 (2 × C), 164.4 (CO₂Me), 167.0 (CO₂Me); GC–MS *m*/*z* 280 (100) [M]⁺, 249 (28), 218 (49), 190 (23), 181 (48), 162 (24), 59 (31); IR (Nujol, cm⁻¹) 2940, 2875, 1725, 1600, 1475, 1380, 1250, 1210, 1170, 1085, 1060, 975, 935, 840, 730. Anal. Calcd for C₁₄H₁₆O₆: C, 59.99; H, 5.75. Found: C, 60.27; H, 5.76.

ASSOCIATED CONTENT

S Supporting Information

NMR spectra of synthesized compounds, crystal X-ray structures of *trans*-**9a** and *trans*-**9c** (CIF), and results of ab initio calculations. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: melnikov@excite.chem.msu.ru.

ACKNOWLEDGMENTS

We thank Prof. K. A. Lyssenko (INEOS RAS) and Dr. V. B. Rybakov (Department of Chemistry, MSU) for X-ray analysis. This work was financially supported by the Russian Foundation of Basic Research (Project 09-03-00244-a).

REFERENCES

(1) Clayden, J.; Greeves, N.; Warren, S.; Wothers, P. Organic Chemistry; Oxford University Press: New York, 2001; 1536 pp.

(2) Smith, M. B.; March, J. March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 6th ed.; John Wiley & Sons: New York, 2007; 2384 pp.

(3) Cerecetto, H.; Gonzalez, M. Top. Heterocycl. Chem. 2007, 10, 265–308.

- (4) Sheremetev, A. B.; Makhova, N. N.; Friedrichsen, W. Adv. Heterocycl. Chem. 2001, 78, 65–188.
- (5) Grigg, R.; Donegan, G.; Nimal Gunaratne, H. Q.; Kennedy, D. A.; Malone, J. F.; Sridharan, V.; Thianpatanagul, S. *Tetrahedron* **1989**, 45, 1723–1746.
- (6) Amornraksa, K.; Barr, D.; Donegan, G.; Grigg, R.; Ratananukul, P.; Sridharan, V. *Tetrahedron* **1989**, *45*, 4649–4668.

(7) Groundwater, P. W.; Morton, A. J.; Salter, R. J. Chem. Soc., Chem. Commun. 1993, 1789–1790.

- (8) Ohashi, M.; Taniguchi, T.; Ogoshi, S. Organometallics 2010, 29, 2386–2389, and references cited therein.
- (9) Chagarovskiy, A. O.; Ivanova, O. A.; Budynina, E. M.; Trushkov, I. V.; Melnikov, M. Ya. *Tetrahedron Lett.* **2011**, *52*, 4421–4425.
- (10) Morrocchi, S.; Ricca, A.; Selva, A.; Zanarotti, A. Gazz. Chim. Ital. **1969**, 99, 165–175.
- (11) Groundwater, P. W.; Nyerges, M.; Fejes, I.; Hibbs, D. E.; Bendell, D.; Anderson, R. J.; McKillop, A.; Sharif, T.; Zhang, W. *ARKIVOC* **2000**, *1*, 684–697.
 - (12) Bunnelle, W. H. Chem. Rev. 1991, 91, 335-362.
- (13) Griesbaum, K.; Kim, W.-S. J. Org. Chem. 1992, 57, 5574–5577.
 (14) Schank, K.; Beck, H.; Buschlinger, M.; Eder, J.; Heisel, T.;
- Pistorius, S.; Wagner, C. Helv. Chim. Acta 2000, 83, 801–826.
 (15) Buchi, G.; Aver, D. E. J. Am. Chem. Soc. 1956, 78, 689–690.
- (16) Ito, S.; Kakehi, A.; Matsuno, T.; Yoshida, J. Bull. Chem. Soc. Jpn. **1980**, 53, 2007–2011.
- (17) Lisowskaya, N. A.; Maslivets, A. N.; Aliev, Z. G. *Tetrahedron* **2004**, *60*, 5319–5323.

- (18) Padwa, A.; Precedo, L.; Semones, M. A. J. Org. Chem. 1999, 64, 4079-4088.
- (19) Hartke, K.; Bien, N.; Massa, W.; Wocadlo, S. Liebigs Ann. Chem. 1996, 1159–1166.
- (20) Huisgen, R.; Kalwinsch, I.; Li, X.; Mloston, G. Eur. J. Org. Chem. 2000, 1685–1694.
- (21) Lesniak, S.; Mloston, G.; Urbaniak, K.; Wasiak, P.; Linden, A.; Heimgartner, H. *Tetrahedron* **2006**, *62*, 7776–7782.
- (22) Freeman, F.; Govindarajoo, G. Rev. Heteroatom Chem. 1995, 13, 123–147.
- (23) Huisgen, R. Angew. Chem., Int. Ed. 1963, 2, 565-598.
- (24) Foehlish, B.; Herter, R.; Wolf, E.; Stezowski, J. J.; Eckle, E. Chem. Ber. 1982, 115, 355-380.
- (25) Nakamura, E.; Yamago, S. Acc. Chem. Res. 2002, 35, 867-877.
- (26) Billera, C. F.; Little, R. D. J. Am. Chem. Soc. 1994, 116, 5487-5488.
- (27) Paul, G. C.; Gajewski, J. J. J. Org. Chem. 1996, 61, 1399-1404.
- (28) Witt, O.; Mauser, H.; Friedl, T.; Wilhelm, D.; Clark, T. J. Org. Chem. 1998, 63, 959-967.
- (29) Koppenhoefer, B.; Winter, W.; Bayer, E. Liebigs Ann. Chem. 1983, 1986–1995.
- (30) Klys, A.; Czardybon, W.; Warkentin, J.; Werstiuk, N. H. Can. J. Chem. 2004, 82, 1769–1773.
- (31) Concellon, J. M.; Bernad, P. L.; del Solar, V.; Garcia-Granda, S.; Diaz, M. R. *Adv. Synth. Catal.* **2008**, *350*, 477–481.
- (32) Murray, R. W.; Jeyaraman, R. J. Org. Chem. 1985, 50, 2847–2853.
- (33) Kobayashi, Y.; Kumadaki, I.; Ohsawa, A.; Sekine, Y.; Ando, A. *Heterocycles* **1977**, *6*, 1587–1592.
- (34) Iranpoor, N.; Firouzabadi, H.; Chitsazi, M.; Jafari, A. A. *Tetrahedron* **2002**, *58*, 7037–7042.
- (35) Adam, W.; Fröhling, B.; Weinkötz, S. J. Org. Chem. 1998, 63, 9154–9155.
- (36) Hansen, G. R.; Burg, T. E. J. Heterocycl. Chem. 1968, 5, 305.
- (37) Ramaiah, D.; Muneer, M.; Gopidas, K. R.; Das, P. K.; Rath, N. P.; George, M. V. J. Org. Chem. **1996**, *61*, 4240–4246.
- (38) Chandrasekhar, B. P.; Schmid, U.; Schmid, R.; Heimgartner, H.; Schmid, H. Helv. Chim. Acta 1975, 58, 1191–1200.
- (39) Wade, T. N.; Kheribet, R. J. Org. Chem. **1980**, 45, 5333-5335. (40) Palacios, F.; Ochoa de Retana, A. M.; Gil, J. I.; Lopez de
- Munain, R. Org. Lett. 2002, 4, 2405–2408, and references cited therein.
- (41) Kawasaki, T.; Saito, S.; Yamamoto, Y. J. Org. Chem. 2002, 67, 4911–4915.
- (42) Reissig, H.-U.; Zimmer, R. Chem. Rev. 2003, 103, 1151-1196.
- (43) Yu, M.; Pagenkopf, B. L. Tetrahedron 2005, 61, 321-347.
- (44) Agrawal, D.; Yadav, V. K. Chem. Commun. 2008, 6471-6488.
- (45) De Simone, F.; Waser, J. Synthesis 2009, 3353-3374.
- (46) Carson, C. A.; Kerr, M. A. Chem. Soc. Rev. 2009, 38, 3051–3060.
- (47) Moustafa, M. M. A. R.; Pagenkopf, B. L. Org. Lett. 2010, 12, 3168-3171.
- (48) Hu, B.; Xing, S.; Ren, J.; Wang, Z. Tetrahedron 2010, 66, 5671–5674.
- (49) Campbell, M. J.; Johnson, J. S.; Parsons, A. T.; Pohlhaus, P. D.; Sanders, S. D. J. Org. Chem. 2010, 75, 6317–6325.
- (50) Karadeolian, A.; Kerr, M. A. J. Org. Chem. 2010, 75, 6830–6841.
 (51) Yang, G.; Shen, Y.; Li, K.; Sun, Y.; Hua, Y. J. Org. Chem. 2011, 76, 229–233.
- (52) Grover, H. K.; Lebold, T. P.; Kerr, M. A. Org. Lett. 2011, 13, 220-223.
- (53) Lu, Z.; Shen, M.; Yoon, T. P. J. Am. Chem. Soc. 2011, 133, 1162–1164.
- (54) Smith, A. G.; Slade, M. C.; Johnson, J. S. Org. Lett. 2011, 13, 1996–1999.
- (55) Perreault, C.; Goudreau, S. R.; Zimmer, L. E.; Charette, A. B. Org. Lett. **2008**, *10*, 689–692.
- (56) Ding, Q.; Wang, Z.; Wu, J. Tetrahedron Lett. 2009, 50, 198–200.

The Journal of Organic Chemistry

(58) Hantawong, K.; Murphy, W. S.; Russell, N.; Boyd, D. R. Tetrahedron Lett. 1984, 25, 999–1000.

- (59) Venkatesh, G.; Ila, H.; Junjappa, H.; Mathur, S.; Hush, V. J. Org. Chem. 2002, 67, 9477–9480.
- (60) While the present paper was being prepared for publication, the transformation of 2-phenylcyclopropane-1,1-dicarboxylate into the corresponding tetraline was independently reported: Novikov, R. A.; Korolev, V. A.; Timofeev, V. P.; Tomilov, Y. V. *Tetrahedron Lett.* **2011**, *52*, 4996–4999.
- (61) Ivanova, O. A.; Budynina, E. M.; Grishin, Yu. K.; Trushkov, I. V.; Verteletskii, P. V. *Eur. J. Org. Chem.* **2008**, 5329–5335.
- (62) Ivanova, O. A.; Budynina, E. M.; Chagarovskiy, A. O.; Kaplun, A. E.; Trushkov, I. V.; Melnikov, M. Ya. *Adv. Synth. Catal.* **2011**, 353, 1125–1134.
- (63) Korotkov, V. S.; Larionov, O. V.; Hofmeister, A.; Magull, J.; de Meijere, A. J. Org. Chem. 2007, 72, 7504–7510.
- (64) Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc. **1965**, 87, 1353–1364.
- (65) Fraser, W.; Suckling, C. J.; Wood, H. C. S. J. Chem. Soc., Perkin Trans. 1 1990, 3137–3144.
- (66) The X-ray CIF files for these structures have been deposited at the Cambridge Crystallographic Data Center (CCDC): deposition nos. CCDC 767227 (9c), 767228 (2d), 768587 (9a), and 779712 (2i). Copies of the data can be obtained, free of charge, from the CCDC, 12 Union Road, Cambridge, CB2 1EZ UK (e-mail: deposit@ ccdc.cam.ac.uk; Internet: www.ccdc.cam.ac.uk).
 - (67) See the Supporting Information.
- (68) Chagarovskiy, A. O.; Ivanova, O. A.; Rakhmankulov, E. R.; Budynina, E. M.; Trushkov, I. V.; Melnikov, M. Ya. *Adv. Synth. Catal.* **2010**, 352, 3179–3184.
- (69) Mueller, G. P.; Bateman, F. C. J. Am. Chem. Soc. 1952, 74, 5631–5632.
- (70) Kobayashi, M. European Patent EP2266941, 2010.
- (71) Minai, M.; Suzuki, Y.; Hamma, N.; Murayama, E. Ger. Offen. 2431561; *Chem. Abstr.* **1975**, *82*, 139717a.
- (72) Sapeta, K.; Kerr, M. A. Org. Lett. 2009, 11, 2081-2084.
- (73) Ivanova, O. A.; Budynina, E. M.; Chagarovskiy, A. O.; Rakhmankulov, E. R.; Trushkov, I. V.; Semeykin, A. V.; Shimanovskii, N. L.; Melnikov, M. Ya. *Chem. Eur. J.* **2011**, *11*, 11738–11742.
- (74) Xu, H.; Lv, M.; Tian, X. Curr. Med. Chem. 2009, 16, 327–349. (75) Gordaliza, M.; Garcia, P. A.; Miguel del Corral, J. M.; Castro, M.
- A.; Gomez-Zurita, M. A. *Toxicon* **2004**, *44*, 441–459, and references cited therein.
- (76) We suppose that the more than stoichiometric loading of Lewis acid does not cause complete ring-opening of the small ring due to the competitive binding of Lewis acid to methoxy groups. It provides the appropriate concentration of a parent cyclopropane in the reaction mixture.
- (77) The higher nucleophilicity of malonate ion in comparison with activated arenes in reactions with stabilized carbocations was shown definitively: Mayr, H.; Ofial, A. R. *J. Phys. Org. Chem.* **2008**, *21*, 584–595.
- (78) Fang, J.; Ren, J.; Wang, Z. Tetrahedron Lett. 2008, 49, 6659–6662.
- (79) Qu, J.-P.; Deng, C.; Zhou, J.; Sun, X.-L.; Tang, Y. J. Org. Chem. **2009**, 74, 7684–7689.