(3 + 3)-Cyclodimerization of Donor-Acceptor Cyclopropanes. Three Routes to Six-Membered Rings

Olga A. Ivanova, ${ }^{\dagger}$ Ekaterina M. Budynina, ${ }^{\dagger, \ddagger}$ Alexey O. Chagarovskiy, ${ }^{\ddagger}$ Igor V. Trushkov, ${ }^{\dagger, \ddagger}$ and Mikhail Ya. Melnikov*, \dagger
${ }^{\dagger}$ Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
${ }^{\dagger}$ Laboratory of Chemical Synthesis, Federal Research Center of Pediatric Hematology, Oncology and Immunology, Leninsky av. 117/2, Moscow 117997, Russia

Supporting Information

Abstract

The ability of donor-acceptor cyclopropanes to $(3+3)$-cyclodimerize is disclosed. It has been found that Lewis acid-induced transformations of 2-(hetero)-arylcyclopropane-1,1-dicarboxylates containing electron-abundant aromatic substituents led to the construction of sixmembered cyclic systems. Depending on the substrate properties and the Lewis acid applied, three types of products can be obtained: (1) 1,4-diarylcyclohexanes, (2) 1-aryl-1,2,3,4tetrahydronaphthalenes, and (3) 9,10-dihydroanthracenes.

- INTRODUCTION

The cyclodimerizations of unsaturated compounds attract the attention of organic chemists as atom-economic reactions allowing for one-step construction of cyclic molecules with a considerable increase of structure complexity. The most investigated types of these processes are $(2+2)$-cyclodimerization of alkenes, allenes, and ketenes and $(4+2)$ cyclodimerization of dienes, affording four- and six-membered rings, respectively. ${ }^{1,2}$ On the other hand, $(3+n)$-cyclodimerizations are much less explored in spite of their great potential for construction of a diversity of carbo- and heterocycles.

In general, there are three types of species that can participate in $(3+n)$-cyclodimerizations: (1) 1,3-dipoles, (2) 1,3-biradicals, and (3) three-membered rings. Thus, $(3+2)$ cyclodimerization of nitrile oxides is a preparative method of furoxans synthesis. ${ }^{3,4}$ There are also scarce examples of other $(3+2)$-cyclodimerizations, ${ }^{5-7}$ among which the most important is a formation of cyclopentanes from the corresponding cyclopropane derivatives. ${ }^{8,9}$ Alternatively, $(3+3)$-cyclodimerizations have been reported for various 1,3-dipoles including nitrile oxides, ${ }^{10,11}$ carbonyl oxides, ${ }^{12-14}$ carbonyl imides, ${ }^{19}$ nitrile imides, ${ }^{16,17}$ carbonyl ylides, ${ }^{18}$ thiocarbonyl ylides, ${ }^{19-21}$ azomethine ylides, ${ }^{22}$ etc. ${ }^{23,24}(3+3)$-Cyclodimerization has also been reported for 1,3-biradicals, such as trimethylenemethanes; ${ }^{25}$ however, this reaction usually proceeds with low yields and is accompanied by formation of various side products. ${ }^{26-28}$ Additionally, there are limited reports of $(3+3)$-cyclodimerization for three-membered heterocycles (oxiranes, ${ }^{29-31}$ dioxiranes, ${ }^{32}$ thiiranes, ${ }^{33,34}$ thiirenes, ${ }^{35}$ aziridines, ${ }^{36,37}$ and
azirines ${ }^{38-40}$), which can be considered as precursors of the corresponding 1,3-dipoles.

The $(3+3)$-cyclodimerization of three-membered carbocycles is an almost unexplored field except for nickelcatalyzed dimerizations of methylenecyclopropanes. ${ }^{8,41}$ Meanwhile, there is a special class of cyclopropanes, namely donor-acceptor (D-A) cyclopropanes, which appear to be very appropriate as candidates for $(3+3)$-cyclodimerization. ${ }^{42-46}$ They are considered to be well-proven synthetic equivalents of a three-carbon 1,3-zwitterionic synthon of \mathbf{I} type (Scheme 1) possessing a dual nature and showing both 1,3-dipole-like ${ }^{47-34}$ and dipolarophile-like ${ }^{55-57}$ properties. However, to date there have not been any reports where these two types of reactivity of $\mathrm{D}-\mathrm{A}$ cyclopropanes were combined in one reaction proceeding as $(3+3)$-cyclodimerization and leading to the cyclohexane formation (I+I path, Scheme 1).

In addition, the alternative behavior of $\mathrm{D}-\mathrm{A}$ cyclopropanes as synthetic equivalents of unusual synthon II (Scheme 1) was recently disclosed for cyclopropanes containing electron-rich aromatic or heteroaromatic substituents. ${ }^{58-62}$ For such cyclopropanes, the (hetero)aromatic ring takes place in reactions as nucleophilic moiety. Therefore, the rival $(3+3)$-cyclodimerization affording dihydroanthracenes (II+II path, Scheme 1) can be hypothesized in this case.

Finally, a process combining the reactivity of D-A cyclopropanes as equivalents of both synthon I and synthon

[^0]Scheme 1. Three Hypothetical Paths of $(3+3)$-Cyclodimerization of Aryl-Derived D-A Cyclopropanes

Table 1. Cyclopropane-to-Cyclohexane $(3+3)$-Cyclodimerization of $1 \mathrm{a}-\mathrm{c}$

${ }^{a}$ The reaction mixture was then allowed to warm to room temperature for 0.5 h . ${ }^{b}$ Oligomeric and polymeric ring-opening products were only formed. ${ }^{c}$ NMR yields. ${ }^{d}$ Product of cyclopropane isomerization 4 was also formed in 10% yield.

II should result in the formation of tetrahydronaphthalenes (I+II path, Scheme 1). A single investigation mentioning an intermediate formation of dimers through $\mathbf{I}+\mathbf{I I}$ path is related to the synthesis of carbazoles from the indole-derived D-A cyclopropanes. ${ }^{59,60}$

In this study, we aimed to perform a $(3+3)$-cyclodimerization of the (hetero)aryl-substituted D-A cyclopropanes. The challenge was to find appropriate conditions for controlling of the chemoselectivity of the process. During this investigation, we have revealed each of the three dimerization pathways presented in Scheme 1 and determined the main factors influencing these dimerizations. Herein we report the results of our research opening new synthetic routes to 1,4-diarylcyclohexanes, 1 -aryl-1,2,3,4-tetrahydronaphthalenes, and 9,10-dihydroanthracenes.

RESULTS AND DISCUSSION

Substrate Selection. For the present research, 2-aryl- and 2-heteroarylcyclopropane-1,1-dicarboxylates were chosen according to the following prerequisites. First, they would give cyclodimers of all three types represented in Scheme 1. Second, these substrates revealed the tendency to easy ring-opening and have previously demonstrated high reactivity in various Lewis acid-induced transformations. ${ }^{42-57}$ In the presence of strongly activating Lewis acids, these cyclopropanes are readily converted into 1,3 -zwitterions ${ }^{63}$ in which anionic and cationic centers are efficiently stabilized by two electron-withdrawing ester groups and an electron-abundant (hetero)aromatic substituent, respectively. Finally, these compounds are readily accessible from (hetero)aromatic aldehydes through the sequence of Knoevenagel/Corey-Chaykovsky reactions. ${ }^{64,65}$

Table 2. Cyclopropane-to-Cyclohexane $(3+3)$-Cyclodimerization of 2-[4-(Dialkylamino)phenyl]cyclopropane-1,1dicarboxylates $1 \mathrm{~d}-\mathrm{h}$

The chemoselectivity of the process is determined by the relative reactivity of two nucleophilic sites (marked blue and green in Scheme 1). Evidently, if both ortho-positions of an aryl substituent are occupied, D-A cyclopropanes cannot react as an equivalent of synthon II. Therefore, to perform a direct dimerization via the $\mathbf{I}+\mathbf{I}$ path and avoid two other paths (I+II and II+II) we have chosen 2-(2,4,6-trimethoxyphenyl)-cyclopropane-1,1-diesters as model substrates.
Oppositely, a $(3+3)$-cyclodimerization of $\mathrm{D}-\mathrm{A}$ cyclopropanes into dihydroanthracenes via the $\mathbf{I I}+\mathbf{I I}$ path implies utilization of D-A cyclopropanes with aryl groups which are prone to electrophilic attack onto the ortho-position. Therefore, 2-(3,4,5-trimethoxyphenyl)cyclopropane-1,1-dicarboxylate was selected as a model compound for this reaction.
The formation of tetrahydronaphthalenes through $\mathbf{I}+\mathbf{I I}$ path is a borderline case between two foregoing dimerizations, so the prediction of substrates, which should afford these products, is not so straightforward, as in two reactions above.
Cyclopropane-to-Cyclohexane ($3+3$)-Cyclodimerization (l+| Path). According to the above arguments, we initially examined cyclopropanes $\mathbf{1 a , b}$ as model substrates. The utilization of $\mathbf{1 a , b}$ with strong electron-donating substituent vicinal to the diester moiety proved to be necessary but insufficient condition to furnish $(3+3)$-cyclodimerization. Thus, we have found that the weakly or moderately activating Lewis acids $\left(\mathrm{Yb}(\mathrm{OTf})_{3}, \mathrm{Sn}(\mathrm{OTf})_{2}, \mathrm{Sc}(\mathrm{OTf})_{3}, \mathrm{Nd}(\mathrm{OTf})_{3}\right)$ failed to induce this reaction at all. To our delight, more activating Lewis acids were revealed to promote the formation of cyclohexanes 2a,b (Table 1). However, the utilization of $\mathrm{AlCl}_{3}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, or GaCl_{3} was not efficient providing low yields of $\mathbf{2 a} \mathbf{a} \mathbf{b}$. The isomeric acyclic dimers $\mathbf{3 a}, \mathbf{b}$ were usually formed as major products in these reactions. Among the studied Lewis acids, the best results were obtained with SnCl_{4}; in this case cyclohexane 2a was formed in ca. 80% yield. The presence of a bromine atom in aromatic substituent, as it is in 1 c , had no significant effect on the reaction outcome. Further variations of the reaction conditions (solvent, temperature, duration, Lewis acid loading) disclosed that this cyclodimerization was the most efficient when it proceeded in $\mathrm{CH}_{3} \mathrm{NO}_{2}$ at $50-55{ }^{\circ} \mathrm{C}$ in the presence of $120-200 \mathrm{~mol} \%$ of SnCl_{4}. Thus, the utilization of more than stoichiometric amounts of Lewis acid was caused by its competitive binding to methoxy groups or other donors of an electron pair in an aromatic substituent.
We have found that the occupation of ortho-positions in aromatic ring is not a necessary condition for cyclopropane-to-
cyclohexane $(3+3)$-cyclodimerization. Thus, a series of cyclopropanes $\mathbf{1 d} \mathbf{- h}$, which have a highly electron-donating NR_{2} group at the para-position of the aromatic ring, was found to smoothly transform into the corresponding cyclohexanes $\mathbf{2 d} \mathbf{- h}$ in moderate to good yields (Table 2). For cyclopropanes $\mathbf{1 f}-\mathbf{h}$ the utilization of SnCl_{4} led to low yields of $\mathbf{2}$, whereas TiCl_{4} was employed efficiently. For all compounds except $\mathbf{1 g}$, which decomposed partially under reaction conditions, the corresponding dimers were obtained in ca. 80% yields.

The cyclopropane-to-cyclohexane $(3+3)$-cyclodimerization proceeded with excellent diastereoselectivity: according to the NMR data, the cycloadducts $\mathbf{2 a} \mathbf{- h}$ were formed as single diastereomers. In comparison to ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the parent cyclopropanes $\mathbf{1 a}-\mathbf{h}$, the corresponding spectra of dimeric products $\mathbf{2 a} \mathbf{-} \mathbf{h}$ were characterized by a low-field shift of resonances of alicyclic protons and carbon atoms. Additionally, ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 a - h}$ revealed the full coupling patterns for the ABX -system of the protons involving into two equivalent $\mathrm{CH}_{2}-\mathrm{CH}$ fragments, namely ${ }^{2} J$ of ca. 14 Hz and ${ }^{3} J$ of ca. $3-5$ and $13-14 \mathrm{~Hz}$, which are also characteristic for saturated common rings.

The restricted rotation of aryl groups with bulky orthosubstituents in cyclohexanes $\mathbf{2 a , b}$ led to magnetic nonequivalency for protons of the aromatic rings and methoxy groups which gave at room temperature two and three different signals, respectively (for 2a, see Figure 1). Variable-temperature ${ }^{1} \mathrm{H}$ NMR study revealed that the coalescence of signals of aromatic protons was achieved at 323 K . Using the approximate Eyring equation, we estimated the energy barrier for rotation of aryl groups in this molecule to be ca. $70 \mathrm{~kJ} / \mathrm{mol}$.

Structure of 2d was unambiguously proved by single-crystal X-ray analysis. ${ }^{66,67}$ These data showed that 2 has a cisarrangement of aromatic substituents and the central sixmembered ring in the molecule adopts a twist-conformation with quasi-equatorial location of the aromatic substituents (Figure 2). The similarity in NMR spectra for all isolated compounds 2 as well as single-crystal X-ray data for 2i (Figure 3, see below) allowed us to conclude that all cyclohexanes 2 were formed in this $(3+3)$-cyclodimerization as cis-isomers only.

The exclusive formation of cis-isomers of 2 seems to be quite unusual as trans-1,4-disubstituted cyclohexanes are well-known to be more preferable. ${ }^{1,2}$ Actually, our ab initio calculations at HF/6-31G level showed that cis-2b in a twist-conformation has $6.9 \mathrm{kj} / \mathrm{mol}$ lower energy than the most stable chair conformer

Figure 1. Temperature dependence of $600 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 2 a in CDCl_{3}.

Figure 2. Single crystal X-ray structure of 2d.
of trans-2b. This trend, namely the preference of cis-isomer over trans-isomer, is observed in the series of various tetramethyl 2,5-bis(aryl)cyclohexane-1,1,4,4-tetracarboxylates. ${ }^{67}$ It can be related to larger steric repulsions between ester groups and aryl substituents in the chair-conformation of trans- $\mathbf{2 b}$ vs those in the twist-conformation of cis-2b. Similarly, significant steric hindrances can occur in the chairlike transition state leading to trans-2b, while twist-like transition state minimalizes them that could be a possible reason for the exclusive formation of cis-2b.

Structures of acyclic dimers $\mathbf{3}$ were established by analysis of NMR spectra. In particular, the ${ }^{3} J$ coupling constants for

Figure 3. Single crystal X-ray structure of $\mathbf{2 i}$.
$\mathrm{C}(\mathrm{Ar}) \mathrm{H}=\mathrm{CH}-$ fragment are ca. 17 Hz , confirming the formation of 3 as E-isomers exclusively.
We suggest that the cyclopropane-to-cyclohexane $(3+3)$ cyclodimerization proceeds by a mechanism which is shown in Scheme 2. The coordination of strongly activating Lewis acid to ester group(s) leads to the cyclopropane $\mathrm{C}(1)-\mathrm{C}(2)$ bond heterolysis affording zwitterion A. Its formation is in accordance with results of a previous study of 2-arylcyclopro-pane-1,1-dicarboxylate reactivity in the absence of highly nucleophilic agents. ${ }^{63}$ A valid argument toward formation of \mathbf{A} is an isolation of side products $\mathbf{4}$ and $\mathbf{5}$ under milder reaction conditions. Indeed, it was previously found that γ-aryl γ butyrolactones 5 were formed from D-A cyclopropanes in the presence of strongly activating Lewis acids as $1: 1$ mixtures of two diastereomers, ${ }^{68}$ which is consistent with the intermediate formation of zwitterion A. Similarly, styrylmalonates 4 are the result of $\mathrm{D}-\mathrm{A}$ cyclopropane isomerization by a stepwise mechanism, where the first step is the Lewis acid-induced heterolysis of the $\mathrm{C}-\mathrm{C}$ bond in the small ring. ${ }^{68}$ Additionally, polymeric products, which we observed under nonoptimized reaction conditions, are formed via zwitterion \mathbf{A} too.

4

5

6

The second step is the attack of nucleophilic center of one zwitterionic species A onto the electrophilic center of another one affording new zwitterion \mathbf{B}. The formation of \mathbf{B} is supported by isolation of dimeric alkenes 3 either together with 2 or as single products under nonoptimized reaction conditions (Table 1). Therefore, malonic anion fragment in intermediate B has a dual reactivity. As a nucleophile, it interacts with benzylic cation to yield cyclohexane 2 (path b). As a base, it captures a proton from δ-position leading to acyclic dimer 3 (path \boldsymbol{c}). A similar dual behavior of this moiety was previously found for the D-A cyclopropanes isomerization into styrylmalonates. ${ }^{68}$

Cyclopropane-to-cyclohexane $(3+3)$-cyclodimerization is a conceptually new efficient approach to the symmetrically substituted cyclohexane derivatives. Moreover, to date there have not been efficient diastereoselective approaches to cis-1,4diarylcyclohexanes. ${ }^{69}$ Therefore, cyclopropane-to-cyclohexane $(3+3)$-cyclodimerization followed by appropriate transformations

Scheme 2. Proposed Mechanism for Cyclopropane-to-Cyclohexane (3+3)-Cyclodimerization

Table 3. Optimization of Reaction Conditions for (3 + 3)-Cyclodimerization of 2-(4-Methoxyphenyl)cyclopropane-1,1dicarboxylates 1i,j

	 1i,j		 2i,j				
entry	R	Lewis acid (mol \%)	solvent	T (${ }^{\circ} \mathrm{C}$)	time (h)	yield of 2 (\%)	yield of 7 (\%) (trans/cis ratio)
1	Me	TiCl_{4} (120)	$\mathrm{CH}_{3} \mathrm{NO}_{2}$	-25	23		a
2	Me	TiCl_{4} (120)	$\mathrm{CH}_{3} \mathrm{NO}_{2}$	$-5 \rightarrow 0$	2		b
3	Me	TiCl_{4} (200)	$\mathrm{CH}_{3} \mathrm{NO}_{2}$	5	2	45	c
4	Me	SnCl_{4} (100)	$\mathrm{CH}_{3} \mathrm{NO}_{2}$	50	3		49 (93:7)
5	Me	SnCl_{4} (100)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-20^{d}	24		90 (95:5)
6	Me	SnCl_{4} (100)	$\mathrm{C}_{6} \mathrm{H}_{6}$	20	24		81 (91:9)
7	Me	SnCl_{4} (150)	$\mathrm{C}_{6} \mathrm{H}_{6}$	40	2		$59(90: 10)^{e}$
8	Me	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(100)$	$\mathrm{CH}_{3} \mathrm{NO}_{2}$	50	3		c
9	Et	SnCl_{4} (100)	$\mathrm{CH}_{3} \mathrm{NO}_{2}$	50	3		87 (91:9)
10	Et	SnCl_{4} (100)	$\mathrm{CH}_{3} \mathrm{NO}_{2}$	20	30	38	49 (95:5)
11	Et	SnCl_{4} (200)	$\mathrm{CH}_{3} \mathrm{NO}_{2}$	20	22	40	
12	Et	$\mathrm{Me}_{3} \mathrm{SiOTf}$ (100)	$\mathrm{CH}_{3} \mathrm{NO}_{2}$	50	3		c
13	Et	AlCl_{3} (240)	$\mathrm{CH}_{3} \mathrm{NO}_{2}$	$-25^{\text {d }}$	70	62	

${ }^{a}$ Chloride 6 was only formed in 80% yield. ${ }^{b}$ Lactone 5 was only formed in 70% yield. ${ }^{c}$ Oligomeric and polymeric ring-opening products were only formed. ${ }^{d}$ Afterward the reaction mixture was allowed to warm to room temperature for $0.5 \mathrm{~h} .{ }^{e}$ Compound 8 was obtained as a side product in 30% yield (see Scheme 3 and related discussion).
of 2 into other cyclohexane derivatives provide convenient access to these systems. The formed 2,5-diarylcyclohexane-1,1,4,4-tetracarboxylates of type 2 are of particular interest as direct precursors of liquid crystalline compounds ${ }^{70}$ or anticholesteremic agents. ${ }^{71}$
(3 + 3)-Cyclodimerization of 2-(4-Methoxyphenyl)-cyclopropane-1,1-dicarboxylates (I+I and I+II Paths). Other substrates, which contain a phenyl group with a strongly electron-donating substituent at the para-position and can undergo $(3+3)$-cyclodimerization via the $\mathbf{I}+\mathbf{I}$ path, are 4 methoxyphenylcyclopropanes $\mathbf{1 i} \mathbf{i} \mathbf{j}$. A short survey of Lewis acids indicated that TiCl_{4}, which was a favorable initiator for dimerization of 4-(dialkylamino)phenyl-containing $\mathrm{D}-\mathrm{A}$ cyclopropanes $\mathbf{1 f}-\mathbf{h}$, was inefficient for dimerization of 4methoxyphenyl $\mathrm{D}-\mathrm{A}$ cyclopropanes $\mathbf{1 i} \mathbf{i}$. Thus, the treatment of 1 i with TiCl_{4} in $\mathrm{CH}_{3} \mathrm{NO}_{2}$ at $-25^{\circ} \mathrm{C}$ only afforded chloride 6, the product of TiCl_{4}-induced cyclopropane ring-opening 61,68,72 (Table 3, entry 1). The reverse addition of $1 \mathbf{i}$ to a TiCl_{4} solution at -5 to $0{ }^{\circ} \mathrm{C}$ yielded γ-butyrolactone 5 as a single product (entry 2). Gratifyingly, the treatment of $1 \mathbf{i}$ with TiCl_{4} at $5^{\circ} \mathrm{C}$ allowed us to obtain the product of the $(3+3)$ -
cyclodimerization $\mathbf{2 i}$ in 45% yield (entry 3). Further increase in reaction temperature did not result in better yield of $2 \mathbf{i}$ due to the significant formation of oligomeric and polymeric ringopening products.

The utilization of SnCl_{4} unexpectedly resulted in alteration of the reaction pathway from $\mathbf{I}+\mathbf{I}$ to $\mathbf{I}+\mathbf{I I}(3+3)$-cyclodimerization. Thus, the treatment of 1 i with 1 equiv of SnCl_{4} in various solvents produced 7 a in moderate to good yields (entries 4-6). The careful optimization of reaction conditions for dimerization of $\mathbf{1 j}$ showed that SnCl_{4} (1 equiv) induced the formation of a tetraline $\mathbf{7 b}$ in high yield when the reaction was performed in $\mathrm{CH}_{3} \mathrm{NO}_{2}$ under moderate heating (entry 9). However, when the same reaction was carried out at room temperature, both tetraline $7 \mathbf{b}$ and cyclohexane $2 \mathbf{j}$ were obtained in ca. 5:4 ratio (entry 10). The increase in a Lewis acid loading allowed for suppression of $7 \mathbf{b}$ formation but did not increase yield of cyclohexane $2 \mathbf{j}$ (entry 11). The utilization of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ and TMSOTf did not lead to both 2 and 7 affording polymeric products only. Oppositely, AlCl_{3} was found to furnish $(3+3)$-cyclodimer 2 j in the reasonable yield (entry 13).

Scheme 3. Proposed Mechanism for Cyclodimerizations of 4-Methoxyphenyl-Derived D-A Cyclopropanes 1i,j

Structures of $\mathbf{2 i} \mathbf{i} \mathbf{j}$ were assigned by comparison of their spectral data with those for $\mathbf{2 a - h}$ and proved unambiguously by single crystal X-ray analysis of $\mathbf{2 i}$ (Figure 3). ${ }^{66,67}$ Structures of $7 \mathbf{a}, \mathbf{b}$ were determined as discussed below.
The mechanism that can be proposed for the $(3+3)$ cyclodimerizations of $\mathbf{1 i}, \mathbf{j}$ is shown in Scheme 3. The formation of zwitterion B in the case of the cyclodimerization through I +II path is the same as that for the cyclopropane-tocyclohexane dimerization ($\mathbf{I}+\mathbf{I}$ path). The coupling between benzylic cation and malonate moiety in \mathbf{B} (path \mathbf{b} in Scheme 3) leads to cyclohexane 2, whereas electrophilic substitution at ortho-position of an aromatic fragment furnishes tetraline 7 (path ortho-d). The transformation of \mathbf{B} into 7 can also proceed via initial electrophilic attack onto the activated ipsoposition of aromatic group resulting in intermediate \mathbf{C} (path ipso-d) followed by migration of electrophile to ortho-position. The ipso-intermediate of \mathbf{C} type was recently proposed for dimerization of the indole-derived D-A cyclopropanes. ${ }^{73}$ The competition between ortho- and ipso-attack is well-known and regulated by a balance of steric and electronic factors. ${ }^{1,2}$ The high electron-donating ability of para-methoxy group makes more preferable the electrophilic attack to ipso-position. Oppositely, the higher steric repulsions for ipso-attack make ortho-attack more preferable. We confirmed the possibility of ipso-attack by the isolation of unusual side-product 8 (Scheme 3) containing angularly fused benzo[c]pentalene scaffold. It was formed in 30% yield when dimerization of $\mathbf{1 i}$ was performed in benzene in the presence of 1.5 equiv of SnCl_{4} (Table 3 , entry 7).

Compound 8 was formed as a single diastereomer. Its structure was assigned by 1 D and 2D COSY, HETCOR, HMBC, and NOESY NMR spectral data. The following criteria were used to elucidate the structure of 8. (1) In ${ }^{1} \mathrm{H}$ NMR spectrum three $A B X$ systems correspond to the protons of three isolated $\mathrm{CH}-\mathrm{CH}_{2}$ fragments, which, according to the HMBC, are connected to two different $\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$ groups in such a way that one of the CHCH_{2} fragments is located between two $\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$ groups. (2) The presence of a cyclohexenone moiety is easily determined by characteristic signals at $\delta_{\mathrm{C}} 154.9,127.8$, and 195.8 ppm assigned to three consecutive carbon atoms of $\mathrm{CH}=\mathrm{CHC}=\mathrm{O}$ conjugated system. (3) In the aromatic region, only one set of signals for
the p-methoxyphenyl substituent is observed. The relative stereochemistry of $\mathbf{8}$ was deduced from its NOESY spectrum. The central benzo[c]pentalene core has the only possible relative configuration, whereas aromatic substituent at $\mathrm{C}(1)$ atom is arranged in a trans-position relative to the cyclohexenone motif (Figure 4).

Figure 4. Representative NOE responses for 8.
Cyclopropane-to-Tetrahydronaphthalene $(3+3)$ Cyclodimerization (I+II Path). Cyclopropanes $\mathbf{1 k}, \mathbf{l}$ and $\mathbf{1 m , n}$ containing 3,4-dialkoxyphenyl and thienyl groups, respectively, were found to readily give cyclic dimers $\mathbf{7 c}-\mathbf{f}$ via I+II path of $(3+3)$-cyclodimerization (Table 4$)$. The most efficient promoter for these reactions was found to be SnCl_{4}. The increase in donating ability of aryl substituent enhanced the tendency to polymerization of initial cyclopropanes $\mathbf{1 k} \mathbf{k}$. To inhibit the polymerization, we added Lewis acid to a cooled solution of a cyclopropane and then stirred the reaction mixture under cooling (for $\mathbf{1 k}, \mathbf{n}$) or slowly heated it to temperature specified in Table 4 (for $\mathbf{1 1 , m}$).

All structural assignments for 7a-f were made from analysis of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data. The presence of a benzannulated central motif in the molecules of 7a-f was confirmed by a new signal arising for a quaternary carbon atom of the aromatic ring instead of the signal of a methine carbon. The ${ }^{1} \mathrm{H}$ NMR spectra revealed resonances of two independent systems which are formed by the protons of $\mathrm{CH}_{2}-\mathrm{CH}$ fragment of a new sixmembered ring and $\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}$ aliphatic side chain. The products $7 \mathbf{c}, \mathbf{d}$ were formed as single regioisomers via electrophilic attack onto $C(6)$ rather than $C(2)$ atom of arene ring. Compounds $7 \mathbf{a}-\mathbf{f}$ were formed as mixtures of two diastereomers. The stereochemical assignments were

Table 4. $(3+3)$-Cyclodimerization of $\mathrm{D}-\mathrm{A}$ Cyclopropanes $\mathbf{1 k}-\mathrm{n}$ via $\mathrm{I}+\mathrm{II}$ Path
entry $\mathbf{1}$
${ }^{a}$ Afterwards the reaction mixture was allowed to warm to room temperature for $0.5 \mathrm{~h} .{ }^{b}$ Reaction mixture was kept at $50{ }^{\circ} \mathrm{C}$ for additional 0.5 h .
accomplished on the basis of NOE experiments for the major isomer of 7 e (Figure 5). According to these data, the major

Figure 5. Representative NOE responses for the trans-7e.
isomers of 7a-f have a trans-arrangement of aryl and 2,2bis(alkoxycarbonyl)ethyl substituents.

The mechanism of $(3+3)$-cyclodimerization of $\mathbf{1 k}-\mathbf{n}$ via the I+II path was described above using the example of $\mathbf{1 i}$ dimerization (Scheme 3). It is noteworthy that cyclopropanes $\mathbf{1 k}, \mathbf{l}$ have an additional donor alkoxy group at the $\mathrm{C}(3)$ position. This group facilitates electrophilic attack onto both ortho-positions (path ortho-d). Thus, the ipso-attack (path ipso-d) seems to be redundant for the explanation of the obtained results in this case. Additionally, the m-alkoxy group introduces desymmetrization into the arene substituent leading to the possibility of formation of two regioisomers during the dimerization of these substrates. However, the cyclodimerization in this case proceeded with excellent regioselectivity exclusively producing regioisomers $7 \mathbf{c}, \mathbf{d}$ via electrophilic substitution at the 6 -position of the aryl ring.

A fragment of 1-aryl-1,2,3,4-tetrahydronaphthalenes is present in many lignans including biologically active ones. ${ }^{74}$ Two of them (etoposide and teniposide) are now being used as anticancer drugs. ${ }^{75}$ Therefore, the $(3+3)$-cyclodimerization of D-A cyclopropanes via path $\mathbf{I}+\mathbf{I I}$ opens broad possibilities for both synthetic and medicinal chemists.

Cyclopropane-to-Dihydroanthracene ($3+3$)-Cyclodimerization (II+II Path). (3,4,5-Trimethoxyphenyl)cyclopropane 10 was found to be an excellent model for $(3+3)$-cyclodimerization via the II + II path leading to dihydroanthracene 9a in good yield (Scheme 1, Table 5) due to the efficient activation of ortho-positions in an aromatic substituent. The optimization of reaction conditions demonstrated that this transformation proceeded efficiently at 50$60{ }^{\circ} \mathrm{C}$ in the presence of 2 equiv of SnCl_{4} (entry 3). The variation of reaction temperature or Lewis acid loading resulted in diminished yield of 9 a . Thus, utilization of 1.2 equiv of SnCl_{4} afforded the target product 9 a in 65% yield together with the corresponding tetrahydronaphthalene 7 g in 21% yield (entry 2). The catalytic version of this transformation can be performed using moderately activating $\mathrm{Sn}(\mathrm{OTf})_{2}$ (entry 4). Moreover, dihydroanthracene 9a was obtained in this case in higher yield and diastereoselectivity in comparison with $\mathrm{SnCl}_{4}-$ induced reactions. Cyclopropanes $\mathbf{1 p}, \mathbf{q}$, containing 3,5- and 2,3dimethoxyphenyl groups, respectively, as donor substituents, also produced dihydroanthracenes $\mathbf{9 b}, \mathbf{c}$ when activated with 1 1.5 equiv of SnCl_{4} or catalytic amounts of $\mathrm{Sn}(\mathrm{OTf})_{2}$. Diastereoselectivity of $(3+3)$-cyclodimerization of $\mathbf{1 0 , p}$ was

podophyllotoxin

cycloolivil

etoposide, $\mathrm{R}=\mathrm{Me}$ teniposide, $\mathrm{R}=2-\mathrm{Th}$

galbulin
poor: anthracenes $\mathbf{9 a}, \mathbf{b}$ were formed as mixtures of two diastereomers in a slight excess of trans-isomer. In contrast, dimerization of D-A cyclopropane $\mathbf{1 q}$, possessing a methoxy group in the ortho-position, proceeded with high diastereoselectivity affording mostly trans-9c.

The mass spectral data unambiguously proved the dimeric composition of $\mathbf{9 a - c}$, while NMR data evidenced a symmetric structure of compounds synthesized. ${ }^{1} \mathrm{H}$ NMR spectra completely revealed coupling patterns for a system of the protons of two identical $\mathrm{CHCH}_{2} \mathrm{CH}$ fragments. In the ${ }^{13} \mathrm{C}$ NMR spectra, a new signal of a quaternary carbon atom was observed in the aromatic region instead of resonance of a methine carbon that confirmed additional substitution in aromatic ring. Furthermore, single-crystal X-ray data were obtained for trans-9a and trans-9c providing unambiguous proof for dihydroanthracene scaffold. ${ }^{67}$
The construction of dihydroanthracene core of 9 from 1 consists in formation of two $\mathrm{C}-\mathrm{C}$ bonds by two consecutive $S_{E} A r$ reactions (Scheme 4). It can be achieved by Lewis acidinduced cyclopropane ring-opening with formation of zwitter-
ion \mathbf{A} followed by its attack onto the starting cyclopropane $\mathbf{1}$ containing highly nucleophilic aromatic substituent ${ }^{76}$ (path \mathbf{f}, Scheme 4). Then Lewis acid induces opening of the second cyclopropane into zwitterion D. The intramolecular attack of the nucleophilic aromatic ring by electrophilic center in D (path \mathbf{g}, Scheme 4) completes the transformation.

Despite significant attention paid to various 9,10-dihydroanthracenes that is reflected to multiple publications dealing with their chemical and biological properties, compounds of type 9 have not been studied yet mainly due to the complexity of their synthesis. Therefore, this method of $(3+3)$-cyclodimerization of the D-A cyclopropanes can be useful as an efficient approach to these compounds.

Overall Mechanistic Scheme for (3 + 3)-Cyclodimerizations of the D-A Cyclopropanes. Therefore, D-A cyclopropanes with electron-abundant aromatic groups as donor substituent revealed an ability to undergo three types of $(3+3)$-cyclodimerization affording cyclohexanes 2 , tetrahydronaphthalenes 7 , or 9,10 -dihydroanthracenes 9 . The putative rationale of their formation is given above. Nevertheless, some mechanistic aspects should be specified.

The first question is a sequence of $\mathrm{C}-\mathrm{C}$ bonds formation in tetralines 7 via the $\mathbf{I}+\mathbf{I I}$ path. Above we postulated that the first $\mathrm{C}-\mathrm{C}$ bond is formed by the coupling of malonate anion with benzyl cation of two zwitterions A furnishing intermediate B and the formation of the second $\mathrm{C}-\mathrm{C}$ bond is a result of $\mathrm{S}_{\mathrm{E}} \mathrm{Ar}$ reaction. However, the reverse sequence can be hypothesized, which involves initial $S_{E} A r$ reaction followed by coupling of malonate anion with benzyl cation. For dimerization of $\mathbf{1 i}, \mathbf{j}$ the latter sequence is not appropriate as in these compounds arene ring is activated to electrophilic substitution at the orthoposition to methoxy group rather than to the ortho-position to cyclopropyl moiety, while actually, the substitution proceeds at the ortho-position to the cyclopropyl ring. Another argument toward reaction path presented in Scheme 3 is the formation of 8 that is in accordance with intermediate \mathbf{B} generation. Moreover, $\mathrm{S}_{\mathrm{E}} \mathrm{Ar}$ reaction should be accompanied by a proton migration from arene to malonate moiety what prevents participation of a latter nucleophilic site in further transformation. Therefore, we are inclined to the mechanism of tetraline 7 formation wherein anion-cation coupling precedes $\mathrm{S}_{\mathrm{E}} \mathrm{Ar}$ process rather than reverse sequence.

Table 5. $(3+3)$-Cyclodimerization of $\mathrm{D}-\mathrm{A}$ Cyclopropanes $10-\mathrm{q}$ via II+II Path

entry	1	$(\mathrm{MeO})_{n}$	Lewis acid (mol \%)	solvent	T (${ }^{\circ} \mathrm{C}$)	time (h)	yield of 9 (\%)	trans/cis ratio
1	10	3,4,5-(MeO) ${ }_{3}$	SnCl_{4} (5)	$\mathrm{CH}_{3} \mathrm{NO}_{2}$	50	3		
2	10	$3,4,5-(\mathrm{MeO})_{3}$	SnCl_{4} (120)	$\mathrm{CH}_{3} \mathrm{NO}_{2}$	60	3	65^{a}	54:46
3	10	$3,4,5-(\mathrm{MeO})_{3}$	SnCl_{4} (200)	$\mathrm{CH}_{3} \mathrm{NO}_{2}$	50	1	77	58:42
4	10	$3,4,5-(\mathrm{MeO})_{3}$	$\mathrm{Sn}(\mathrm{OTf})_{2}(10)$	$\mathrm{CH}_{3} \mathrm{NO}_{2}$	50	4.5	88	63:37
5	1p	3,5-(MeO) ${ }_{2}$	$\mathrm{SnCl}_{4}(150)$	$\mathrm{CH}_{3} \mathrm{NO}_{2}$	50	3	65	55:45
6	1 p	3,5-(MeO) ${ }_{2}$	$\mathrm{Sn}(\mathrm{OTf})_{2}(10)$	$\mathrm{CH}_{3} \mathrm{NO}_{2}$	60	3	80	64:36
7	1q	2,3-(MeO) ${ }_{2}$	$\mathrm{SnCl}_{4}(100)$	$\mathrm{CH}_{3} \mathrm{NO}_{2}$	55	2	31	>95:5
8	1q	2,3-(MeO) 2	$\mathrm{Sn}(\mathrm{OTf})_{2}(10)$	$\mathrm{CH}_{3} \mathrm{NO}_{2}$	100	8	61	90:10
${ }^{a}$ Tetrahydronaphthalene 7 g ($\left.\mathrm{dr} 72: 28\right)$ was also isolated in 21% yield.								

Scheme 4. Proposed Mechanism for Aryl-Substituted Cyclopropane-to-Dihydroanthracene (3+3)-Cyclodimerization

a)

b)

c)

Figure 6. Conformations of intermediate B leading to formation of (a) cis-2, (b) trans-7, and (c) cis-7.
Scheme 5. Overall Mechanistic Scheme Including Three (3+3)-Cyclodimerizations of D-A Cyclopropanes 1

The second question is the competition between formation of cyclohexanes 2 and tetralines 7 from the same intermediate B. This dual behavior can be explained by means of analysis of the reactive conformations of intermediate \mathbf{B} which are shown in Figure 6. Eclipsed twist-like conformation a is a direct precursor for the transition state leading to cyclohexane 2 with a cis-arrangement of aromatic groups. Meanwhile, the staggered conformations \mathbf{b} and \mathbf{c} favored for trans-7 and cis-7 construction, respectively, can be stabilized by interaction of the electron-depleted benzyl cation and the electron-enriched second aromatic ring resulting in a $\pi-\pi^{*}$ donor-acceptor complex. ${ }^{62,73}$ In this case, chemoselectivity is provided by the close proximity of two reaction centers, namely benzyl cation and nucleophilic ortho-position of aryl substituent. Despite the higher nucleophilicity of the malonyl anion, ${ }^{77}$ its attack in this case is not competitive. The same preference of nucleophilic site at the ortho-position of an aromatic substituent rather than malonyl anion was recently found for heteroaryl-substituted D-A cyclopropanes. ${ }^{58-62}$
One more possibility should be analyzed, which involves initial formation of one cycloadduct followed by its rearrangement into another product. Similar transformations were found
recently in reactions of D-A cyclopropanes with enols ${ }^{78,79}$ and aldehydes. ${ }^{51}$ For example, cyclopropanes $\mathbf{1 i} \mathbf{j} \mathbf{j}$ form either cyclohexanes $2 \mathbf{i}, \mathbf{k}$ or tetrahydronaphthalenes $\mathbf{7 a}, \mathbf{b}$ depending on the reaction conditions. We checked the possibility of rearrangement of one cyclodimer into another one. For this purpose, we treated a solution of cyclohexane $2 \mathbf{i}$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}$ with 5 equiv of SnCl_{4} or TiCl_{4} and heated the reaction mixture under reflux for $2-24 \mathrm{~h}$. Similarly, tetrahydronaphthalene 7a was treated with 3 equiv of SnCl_{4} in benzene and heated at $50{ }^{\circ} \mathrm{C}$ for 5 h . No interconversion of $2 \mathbf{i}$ and 7 a was observed according to the NMR spectra. Similarly, we have not found conversion of 7 into dihydroanthracene 9. Therefore, we believe that cyclodimers 2,7 , and 9 are formed along three independent paths $\mathbf{a}-\mathbf{b}, \mathbf{a}-\mathbf{d}$, and $\mathbf{f}-\mathbf{g}$, respectively. The overall scheme of $(3+3)$-cyclodimerizations of the D-A cyclopropanes can be represented in the following way (Scheme 5).

On the whole, a balance of numerous factors, such as substrate nature, activating ability of a Lewis acid, temperature, solvent, etc., controls the outcome of the $(3+3)$-cyclodimerization. The further studies on the reaction mechanism in detail are now in progress.

- CONCLUSION

In the present research, we demonstrated for the first time the possibility of the Lewis acid-induced $(3+3)$-cyclodimerization of 2-(hetero)arylcyclopropane-1,1-dicarboxylates with formation of three different types of six-membered cyclic systems. In these processes three reaction centers of a D-A cyclopropane molecule can be involved, namely $\mathrm{C}(1)$ atom of small ring and ortho-carbon atom of an aromatic substituent as nucleophilic sites and $\mathrm{C}(2)$ atom of cyclopropane as an electrophilic site. As a result, the facile synthetic approach to 1,4-diarylcyclohexanes, 1 -aryl-1,2,3,4-tetrahydronaphthalenes, and 9,10-dihydroanthracenes from easily available reagents using inexpensive promotor has been developed. The $(3+3)$-cyclodimerization leading to 1,4-diarylcyclohexanes proceeded with excellent diastereoselectivity furnishing cis-isomer excusively, while diastereoselectivity of 1 -aryl-1,2,3,4-tetrahydronaphthalenes and 9,10-dihydroanthracenes construction varied from moderate to high with the predominante formation of trans-isomers. To provide chemoselectivity of the processes, the careful optimization of reaction conditions was undertaken which resulted in the development of procedures affording these three types of products of $(3+3)$-cyclodimerization in good yields.

- EXPERIMENTAL SECTION

General Procedure for the Synthesis of Cyclopropanes $1 \mathrm{a}, \mathrm{b}, \mathrm{d}-\mathbf{q} .{ }^{64,65}$ To a stirred suspension of $\mathrm{NaH}(0.24 \mathrm{~g}, 6 \mathrm{mmol})$ in dry DMSO $(10 \mathrm{~mL})$ was added trimethylsulfoxonium iodide $(1.32 \mathrm{~g}, 6$ mmol) in a single portion at room temperature. Vigorous evolution of hydrogen lasted ca. 10 min , after which the reaction mixture was stirred for an additional 25 min . Then a solution of alkylidenemalonate $(5 \mathrm{mmol})$ in dry DMSO $(2 \mathrm{~mL})$ was added in a single portion. The resulted mixture was stirred under the conditions specified, poured into $\mathrm{H}_{2} \mathrm{O}$-ice (10 mL), and extracted with diethyl ether ($5 \times 5 \mathrm{~mL}$). The combined organic layers were washed with water $(5 \times 5 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Cyclopropanes were purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: diethyl ether).

Dimethyl 2-(4-Piperidinophenyl)cyclopropane-1,1-dicarboxylate (1f). Compound $\mathbf{1 f}$ was synthesized from dimethyl 2-(4piperidinobenzylidene)malonate (10a), reaction time 1 h , and isolated as an orange oil ($1.06 \mathrm{~g}, 67 \%$): $R_{f} 0.48$ (diethyl ether/hexane $1: 1$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 1.52-1.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.65-1.69(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.70\left(\mathrm{dd},{ }^{2} \mathrm{~J}=5.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.15\left(\mathrm{dd},{ }^{2} J=\right.$ $\left.5.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.08-3.12\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.15(\mathrm{dd}$, $\left.{ }^{3} J=7.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.76(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{O}\right), 6.82\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}, \mathrm{Ar}\right), 7.05\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{CH}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 19.3\left(\mathrm{CH}_{2}\right), 24.2\left(\mathrm{CH}_{2}\right)$, $25.8\left(2 \times \mathrm{CH}_{2}\right), 32.6(\mathrm{CH}), 37.1(\mathrm{C}), 50.4\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 52.3$ $\left(\mathrm{CH}_{3} \mathrm{O}\right), 52.7\left(\mathrm{CH}_{3} \mathrm{O}\right), 116.0(2 \times \mathrm{CH}, \mathrm{Ar}), 124.5(\mathrm{C}, \mathrm{Ar}), 129.1(2 \times$ $\mathrm{CH}, \mathrm{Ar}), 151.4(\mathrm{C}, \mathrm{Ar}), 167.2\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, $170.4\left(\mathrm{CO}_{2} \mathrm{Me}\right)$; IR (Nujol, $\left.\mathrm{cm}^{-1}\right) 2952,2865,2820,1740,1619,1524,1455,1390,1340,1290$, 1250, 1184, 1145, 1035, 930, 840, 781, 740; GC-MS m/z 318 (27), 317 (100) [M] ${ }^{+}, 316$ (57), 258 (31), 198 (88), 142 (24), 130 (30), 115 (83), 59 (34). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{4}$: C, 68.12; H, 7.30; N, 4.41. Found: C, $67.82 ; \mathrm{H}, 7.14 ; \mathrm{N}, 4.61$.

Dimethyl 2-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)-cyclopropane-1,1-dicarboxylate (11). Compound 11 was synthesized from dimethyl $2-[(2,3$-dihydrobenzo $[b][1,4]$ dioxin- $6-y l)$ methylene]malonate ($\mathbf{1 0 b}$), reaction time 1 h , and isolated as a white solid ($1.12 \mathrm{~g}, 77 \%$): mp $92-93{ }^{\circ} \mathrm{C} ; R_{f} 0.52$ (diethyl ether/ hexane ether $1: 2)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 1.65\left(\mathrm{dd},{ }^{2} \mathrm{~J}=5.1\right.$ $\left.\mathrm{Hz},{ }^{3} J=9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.05\left(\mathrm{dd},{ }^{2} J=5.1 \mathrm{~Hz},{ }^{3} J=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, CH_{2}), $3.08\left(\mathrm{dd},{ }^{3} J=8.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 3.40(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{O}\right), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 4.16\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 6.61(\mathrm{dd}$, $\left.{ }^{3} J=8.4 \mathrm{~Hz},{ }^{4} J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{Ar}\right), 6.62\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right.$, $\mathrm{Ar}), 6.70\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{Ar}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$ $\delta 19.3\left(\mathrm{CH}_{2}\right), 32.1(\mathrm{CH}), 37.0(\mathrm{C}), 52.3\left(\mathrm{CH}_{3} \mathrm{O}\right), 52.7\left(\mathrm{CH}_{3} \mathrm{O}\right), 64.2$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 64.3\left(\mathrm{CH}_{2} \mathrm{O}\right), 116.9(\mathrm{CH}, \mathrm{Ar}), 117.3(\mathrm{CH}, \mathrm{Ar}), 121.4(\mathrm{CH}$,
$\mathrm{Ar}), 127.6$ (C, Ar), 142.9 (C, Ar), 143.2 (C, Ar), $167.0\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, $170.2\left(\mathrm{CO}_{2} \mathrm{Me}\right)$; IR (Nujol, cm^{-1}) 3450, 2975, 2895, 1735, 1630, 1593, 1518, 1445, 1380, 1290, 1220, 1138, 1080, 940, 897, 828, 780, 710; GC-MS m/z 292 (52) [M] ${ }^{+}, 232$ (51), 228 (82), 200 (21), 179 (59), 173 (100), 117 (30), 89 (57), 78 (29), 59 (70). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{6}$: C, 61.64; H, 5.52. Found: C, 61.79; H, 5.75.

Dimethyl 2-(3,5-Dimethoxyphenyl)cyclopropane-1,1-dicarboxylate (1p). Compound 1 p was synthesized from dimethyl 2 -(3,5-dimethoxybenzylidene)malonate (10c), reaction time 1 h , and isolated as white solid ($0.98 \mathrm{~g}, 67 \%$): mp $69-70{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 1.68\left(\mathrm{dd},{ }^{2} J=5.1 \mathrm{~Hz},{ }^{3} J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.10\left(\mathrm{dd},{ }^{2} J=5.1 \mathrm{~Hz},{ }^{3} J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.13\left(\mathrm{dd},{ }^{3} J=8.0 \mathrm{~Hz}\right.$, $\left.{ }^{3} \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 3.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.71\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3} \mathrm{O}\right)$, $3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 6.26$ (br.d, $\left.{ }^{4} \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{Ar}\right), 6.28$ (d, $\left.{ }^{4} J=2.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}, \mathrm{Ar}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 19.4$ $\left(\mathrm{CH}_{2}\right), 32.6(\mathrm{CH}), 37.1(\mathrm{C}), 52.4\left(\mathrm{CH}_{3} \mathrm{O}\right), 52.8\left(\mathrm{CH}_{3} \mathrm{O}\right), 55.2(2 \times$ $\mathrm{CH}_{3} \mathrm{O}$), $99.6(\mathrm{CH}, \mathrm{Ar}), 106.3(2 \times \mathrm{CH}, \mathrm{Ar}), 137.0(\mathrm{C}, \mathrm{Ar}), 160.5(2 \times$ $\mathrm{C}, \mathrm{Ar}), 167.0\left(\mathrm{CO}_{2} \mathrm{Me}\right), 170.2\left(\mathrm{CO}_{2} \mathrm{Me}\right)$; IR (Nujol, $\left.\mathrm{cm}^{-1}\right) 2960$, $2875,1730,1600,1480,1385,1250,1210,1160,1085,1065,940,870$, 840, 820, 775, 745. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{6}$: C, 61.22; H, 6.16. Found: C, 61.13; H, 6.11.

Diethyl 2-(3-Bromo-2,4,6-trimethoxyphenyl)cyclopropane-

 1,1-dicarboxylate (1c). N-Bromosuccinimide (NBS, $0.10 \mathrm{~g}, 0.57$ $\mathrm{mmol})$ was added to a solution of diethyl 2 -($2,4,6$-trimethoxyphenyl)-cyclopropane-1,1-dicarboxylate (1a) $(0.20 \mathrm{~g}, 0.57 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6$ mL) at $-60^{\circ} \mathrm{C}$. The reaction mixture was slowly warmed to $-20^{\circ} \mathrm{C}$ and stirred at that temperature until 1a was consumed (TLC monitoring). Then the reaction mixture was quenched at $-20^{\circ} \mathrm{C}$ with 10% aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{~mL})$, warmed to room temperature, diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The combined organic extracts were dried with MgSO_{4}, concentrated in vacuo, and purified by flash chromatography (eluent: hexane/ethyl acetate 3:1) to yield 1c ($223 \mathrm{mg}, 91 \%$) as a yellowish oil: $R_{f} 0.42$ (hexanes/ethyl acetate 2:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.88(\mathrm{t}$, $\left.{ }^{3} J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.24\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.75\left(\mathrm{dd},{ }^{2} \mathrm{~J}=\right.$ $\left.4.8 \mathrm{~Hz},{ }^{3} J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.37\left(\mathrm{dd},{ }^{2} J=4.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, CH_{2}), $2.84\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 3.72(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{O}$), $3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.78-3.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.80(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{O}\right), 4.16-4.23\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 6.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 13.7\left(\mathrm{CH}_{3}\right)$, $14.1\left(\mathrm{CH}_{3}\right), 21.3\left(\mathrm{CH}_{2}\right), 25.2$ $(\mathrm{CH}), 35.3(\mathrm{C}), 55.8\left(\mathrm{CH}_{2} \mathrm{O}\right), 56.3\left(\mathrm{CH}_{2} \mathrm{O}\right), 60.6\left(\mathrm{CH}_{3} \mathrm{O}\right), 60.8$ $\left(\mathrm{CH}_{3} \mathrm{O}\right), 61.2\left(\mathrm{CH}_{3} \mathrm{O}\right), 92.2(\mathrm{CH}, \mathrm{Ar}), 97.9(\mathrm{C}, \mathrm{Ar}), 110.6(\mathrm{C}, \mathrm{Ar})$, 156.4 (C, Ar), 158.1 (C, Ar), 159.7 (C, Ar), $167.3\left(\mathrm{CO}_{2} \mathrm{Et}\right), 170.1$ $\left(\mathrm{CO}_{2} \mathrm{Et}\right)$; IR (Nujol, cm^{-1}) 2995, 2935, 2865, 1730, 1600, 1590, 1460, 1400, 1325, 1290, 1210, 1185, 1130, 1035, 920, 880, 810, 745. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{BrO}_{7}: \mathrm{C}, 50.13 ; \mathrm{H}, 5.38$. Found: C, $50.04 ; \mathrm{H}, 5.23$.General Procedure for the Lewis Acid-Induced Dimerization of Cyclopropanes 1a-q. Lewis acid $\left(\mathrm{AlCl}_{3}, \mathrm{Sn}(\mathrm{OTf})_{2}, \mathrm{ZnCl}_{2}\right)$ or a solution of Lewis acid $\left(\mathrm{SnCl}_{4}, \mathrm{TiCl}_{4}\right)$ in dry solvent $(1 \mathrm{~mL})$ was added to a vigorously stirred solution of cyclopropane 1 containing molecular sieves $4 \AA$. The resulting mixture was kept under the conditions specified and poured into 10 mL of saturated aqueous NaHCO_{3}. After extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, the combined organic fractions were washed with aqueous Trilon B $(3 \times 10 \mathrm{~mL})$ and water $(2 \times 10$ mL) and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under vacuum, and the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right)$ to yield the desired product.

Tetraethyl cis-2,5-Bis(2,4,6-trimethoxyphenyl)cyclohexane-1,1,4,4-tetracarboxylate (2a). A solution of 1a ($350 \mathrm{mg}, 1.0$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}(14 \mathrm{~mL})$ was treated with $\mathrm{SnCl}_{4}(280 \mathrm{mg}, 0.13$ $\mathrm{mL}, 1.1 \mathrm{mmol}$), and the resulting mixture was stirred at $55^{\circ} \mathrm{C}$ for 3 h affording 2a ($292 \mathrm{mg}, 83 \%$) as a white foam: $\mathrm{mp} 153-154^{\circ} \mathrm{C} ; R_{f} 0.50$ (dietyl ether); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.69\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}\right.$, $\left.2 \times \mathrm{CH}_{3}\right), 1.37\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 2.14\left(\mathrm{dd},{ }^{2} J=13.7 \mathrm{~Hz}\right.$, $\left.{ }^{3} J=5.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}{ }^{a} \mathrm{H}\right), 3.36\left(\mathrm{dd},{ }^{2} J=13.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=13.6 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\left.2 \times \mathrm{CH}^{b} \mathrm{H}\right), 3.43-3.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.57-3.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right)$, $3.73\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.78\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.82(\mathrm{~s}, 6 \mathrm{H}, 2 \times$ $\left.\mathrm{OCH}_{3}\right), 4.01-4.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.44-4.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.85$ (dd, ${ }^{3} J=5.2 \mathrm{~Hz},{ }^{3} J=13.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}$), $6.06($ br.s, $2 \mathrm{H}, 2 \times \mathrm{CH}$, Ar), 6.12 (br.s, $2 \mathrm{H}, 2 \times \mathrm{CH}, \mathrm{Ar}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 13.4$
$\left(2 \times \mathrm{CH}_{3}\right), 14.2\left(2 \times \mathrm{CH}_{3}\right), 29.9(2 \times \mathrm{CH}), 30.3\left(2 \times \mathrm{CH}_{2}\right), 54.5$ $\left(2 \times \mathrm{OCH}_{3}\right), 55.3\left(2 \times \mathrm{OCH}_{3}\right), 56.8\left(2 \times \mathrm{OCH}_{3}\right), 58.6(2 \times \mathrm{C}), 60.2$ $\left(2 \times \mathrm{OCH}_{2}\right), 61.5\left(2 \times \mathrm{OCH}_{2}\right), 90.9(2 \times \mathrm{CH}, \mathrm{Ar}), 91.4(2 \times \mathrm{CH}$, $\mathrm{Ar}), 113.6(2 \times \mathrm{C}, \mathrm{Ar}), 159.3(2 \times \mathrm{C}, \mathrm{Ar}), 159.6(2 \times \mathrm{C}, \mathrm{Ar}), 159.9$ $(2 \times \mathrm{C}, \mathrm{Ar}), 170.4\left(2 \times \mathrm{CO}_{2} \mathrm{Et}\right), 172.3\left(2 \times \mathrm{CO}_{2} \mathrm{Et}\right)$; IR (Nujol, $\left.\mathrm{cm}^{-1}\right)$ 2930, 2870, 1720, 1600, 1480, 1380, 1335, 1160, 1125, 1070, 965, 880, 820, 740. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{O}_{14}: \mathrm{C}, 61.35 ; \mathrm{H}, 6.86$. Found: C, 61.21; H, 7.01.

Tetramethyl cis-2,5-Bis(2,4,6-trimethoxyphenyl)-cyclohexane-1,1,4,4-tetracarboxylate (2b). A solution of $\mathbf{1 b}$ ($160 \mathrm{mg}, 0.5 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{NO}_{2}(7 \mathrm{~mL})$ was treated with GaCl_{3} ($36 \mathrm{mg}, 0.2 \mathrm{mmol}$), and the resulting mixture was stirred at $20^{\circ} \mathrm{C}$ for 4 h affording $\mathbf{2 b}(42 \mathrm{mg}, 26 \%)$ and $\mathbf{3 b}(31 \mathrm{mg}, 19 \%) . \mathbf{2 b}$: colorless liquid; $R_{f} 0.45$ (diethyl ether); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 2.13$ $\left(\mathrm{dd},{ }^{2} J=13.8 \mathrm{~Hz},{ }^{3} J=5.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}^{a} \mathrm{H}\right), 3.08(\mathrm{~s}, 6 \mathrm{H}, 2 \times$ OCH_{3}), $3.35\left(\mathrm{dd},{ }^{2} \mathrm{~J}=13.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}=14.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}^{b} \mathrm{H}\right), 3.67(\mathrm{~s}$, $\left.6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.79\left(\mathrm{~s}, 12 \mathrm{H}, 4 \times \mathrm{OCH}_{3}\right), 3.82\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right)$, $4.80\left(\mathrm{dd},{ }^{3} \mathrm{~J}=5.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}=14.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}\right), 6.08(\mathrm{br} . \mathrm{s}, 2 \mathrm{H}, 2 \times$ $\mathrm{CH}, \mathrm{Ar}), 6.13$ (br.s, $2 \mathrm{H}, 2 \times \mathrm{CH}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta$ $30.3(2 \times \mathrm{CH}), 30.5\left(2 \times \mathrm{CH}_{2}\right), 51.4\left(2 \times \mathrm{OCH}_{3}\right), 52.2\left(2 \times \mathrm{OCH}_{3}\right)$, $52.8\left(2 \times \mathrm{OCH}_{3}\right), 55.3\left(2 \times \mathrm{OCH}_{3}\right), 55.6\left(2 \times \mathrm{OCH}_{3}\right), 57.2(2 \times \mathrm{C})$, $90.4(2 \times \mathrm{CH}, \mathrm{Ar}), 90.8(2 \times \mathrm{CH}, \mathrm{Ar}), 113.5(2 \times \mathrm{C}, \mathrm{Ar}), 159.2(2 \times$ $\mathrm{C}, \mathrm{Ar}), 159.6(2 \times \mathrm{C}, \mathrm{Ar}), 160.1(2 \times \mathrm{C}, \mathrm{Ar}), 170.7\left(2 \times \mathrm{CO}_{2} \mathrm{Me}\right)$, $172.8\left(2 \times \mathrm{CO}_{2} \mathrm{Me}\right)$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{O}_{14}: \mathrm{C}, 59.25 ; \mathrm{H}, 6.22$. Found: C, 59.17; H, 6.30 .
Tetraethyl cis-2,5-Bis(3-bromo-2,4,6-trimethoxyphenyl)-cyclohexane-1,1,4,4-tetracarboxylate (2c). A solution of 1 c ($200 \mathrm{mg}, 0.464 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{NO}_{2}(15 \mathrm{~mL})$ was treated with SnCl_{4} $(270 \mathrm{mg}, 0.12 \mathrm{~mL}, 1.02 \mathrm{mmol})$, and the resulting mixture was stirred at $50^{\circ} \mathrm{C}$ for 2 h affording $2 \mathrm{c}(162 \mathrm{mg}, 81 \%)$ as a white solid: $\mathrm{mp} 225-$ $226^{\circ} \mathrm{C}$ dec; $R_{\mathrm{f}} 0.50$ (diethyl ether); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $0.73\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.36\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right)$, $2.23\left(\mathrm{dd},{ }^{2} J=13.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}=5.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}^{a} \mathrm{H}\right), 3.33\left(\mathrm{dd},{ }^{2} J=\right.$ $\left.13.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}=13.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}^{b} \mathrm{H}\right), 3.48-3.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right)$, $3.65-3.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.78\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.89(\mathrm{~s}, 6 \mathrm{H}, 2 \times$ $\left.\mathrm{OCH}_{3}\right), 3.92\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 4.20-4.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.34-$ $4.39\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.78\left(\mathrm{dd},{ }^{3} \mathrm{~J}=5.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}=13.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times\right.$ $\mathrm{CH}), 6.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{Ar})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 13.4(2 \times$ $\left.\mathrm{CH}_{3}\right), 14.1\left(2 \times \mathrm{CH}_{3}\right), 30.5\left(2 \times \mathrm{CH}_{2}\right), 31.9(2 \times \mathrm{CH}), 54.8(2 \times$ $\left.\mathrm{OCH}_{3}\right), 56.5\left(2 \times \mathrm{OCH}_{3}\right), 58.5(2 \times \mathrm{C}), 60.5\left(2 \times \mathrm{OCH}_{3}\right), 61.2(2 \times$ $\left.\mathrm{OCH}_{2}\right), 62.0\left(2 \times \mathrm{OCH}_{2}\right), 92.6(2 \times \mathrm{CH}, \mathrm{Ar}), 98.4(2 \times \mathrm{C}, \mathrm{Ar}), 119.8$ $(2 \times \mathrm{C}, \mathrm{Ar}), 155.8(2 \times \mathrm{C}, \mathrm{Ar}), 157.0(2 \times \mathrm{C}, \mathrm{Ar}), 158.7(2 \times \mathrm{C}, \mathrm{Ar})$, $170.0\left(2 \times \mathrm{CO}_{2} \mathrm{Et}\right), 171.8\left(2 \times \mathrm{CO}_{2} \mathrm{Et}\right)$; IR (Nujol, cm $\left.{ }^{-1}\right) 2940,2875$, 1725, 1595, 1465, 1370, 1340, 1220, 1200, 1115, 1055, 975, 930, 810; MS MALDI-TOF m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{Br}_{2} \mathrm{O}_{14} 860$, found [M] ${ }^{+} 860$. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{Br}_{2} \mathrm{O}_{14}$: C, 50.13; H, 5.38. Found: C, 49.95; H, 5.32.

Tetramethyl cis-2,5-Bis[4-(dimethylamino)phenyl]-cyclohexane-1,1,4,4-tetracarboxylate (2d). A solution of 1d ($350 \mathrm{mg}, 1.264 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{NO}_{2}(16 \mathrm{~mL})$ was treated with SnCl_{4} ($400 \mathrm{mg}, 0.18 \mathrm{~mL}, 1.544 \mathrm{mmol}$), and the resulting mixture was stirred at $55^{\circ} \mathrm{C}$ for 3 h affording $2 \mathrm{~d}(266 \mathrm{mg}, 76 \%)$ as a yellowish solid: mp $123-124^{\circ} \mathrm{C} ; R_{f} 0.25$ (diethyl ether/hexane 1:1); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $400 \mathrm{MHz}) \delta 2.37\left(\mathrm{dd},{ }^{2} \mathrm{~J}=14.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}=2.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}^{a} \mathrm{H}\right), 2.89$ ($\mathrm{s}, 12 \mathrm{H}, 4 \times \mathrm{CH}_{3}$), $3.14\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.16\left(\mathrm{dd},{ }^{2} \mathrm{~J}=14.3 \mathrm{~Hz}\right.$, $\left.{ }^{3} \mathrm{~J}=12.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}^{b} \mathrm{H}\right), 3.63\left(\mathrm{dd},{ }^{3} J=2.8 \mathrm{~Hz},{ }^{3} J=12.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $2 \times \mathrm{CH}), 3.67\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 6.64\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{CH}\right.$, $\mathrm{Ar}), 7.20\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{CH}, \mathrm{Ar}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta 32.9\left(2 \times \mathrm{CH}_{2}\right), 39.0(2 \times \mathrm{CH}), 40.6\left(4 \times \mathrm{CH}_{3}\right), 52.0(2 \times$ $\left.\mathrm{OCH}_{3}\right), 52.7\left(2 \times \mathrm{OCH}_{3}\right), 60.6(2 \times \mathrm{C}), 112.0(4 \times \mathrm{CH}, \mathrm{Ar}), 128.6$ $(2 \times \mathrm{C}, \mathrm{Ar}), 129.2(4 \times \mathrm{CH}, \mathrm{Ar}), 149.5(2 \times \mathrm{C}, \mathrm{Ar}), 170.4(2 \times$ $\mathrm{CO}_{2} \mathrm{Et}$), $172.5\left(2 \times \mathrm{CO}_{2} \mathrm{Et}\right)$; IR (Nujol, cm ${ }^{-1}$) 2950, 2880, 1730, 1610, 1525, 1375, 1235, 1170, 1045, 955, 892, 825, 720; MS MALDITOF m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{8}$ 555, found $[\mathrm{M}+\mathrm{H}]^{+}$555. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{8}: \mathrm{C}, 64.97 ; \mathrm{H}, 6.91 ; \mathrm{N}, 5.05$. Found: C, 64.75; H, 7.15; N, 5.09.
Tetraethyl cis-2,5-Bis[4-(dimethylamino)phenyl]-cyclohexane-1,1,4,4-tetracarboxylate (2e). A solution of 1 e $(180 \mathrm{mg}, 0.60 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}(8 \mathrm{~mL})$ was treated with SnCl_{4} $(190 \mathrm{mg}, 0.085 \mathrm{~mL}, 0.73 \mathrm{mmol})$, and the resulting mixture was stirred
at $55^{\circ} \mathrm{C}$ for 3 h affording $2 \mathrm{e}(160 \mathrm{mg}, 86 \%)$ as a yellowish solid: mp $131-132{ }^{\circ} \mathrm{C} ; R_{f} 0.30$ (diethyl ether/hexane 1:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 0.78\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.14\left(\mathrm{t},{ }^{3} J=7.1 \mathrm{~Hz}\right.$, $6 \mathrm{H}, 2 \times \mathrm{CH}_{3}$), $2.37\left(\mathrm{dd},{ }^{2} J=14.4 \mathrm{~Hz},{ }^{3} J=2.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}^{a} \mathrm{H}\right.$), $2.90\left(\mathrm{~s}, 12 \mathrm{H}, 2 \times \mathrm{NMe}_{2}\right), 3.18\left(\mathrm{dd},{ }^{2} \mathrm{~J}=14.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}=13.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times\right.$ $\left.\mathrm{CH}^{b} \mathrm{H}\right), 3.41-3.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.64-3.72(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}$, $\left.\mathrm{OCH}_{2}\right), 4.10-4.28\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{OCH}_{2}\right), 6.63\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times\right.$ $\mathrm{CH}, \mathrm{Ar}), 7.20\left(\mathrm{~d},{ }^{3}{ }^{3}=8.4 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{CH}, \mathrm{Ar}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 13.4\left({ }^{1} J_{\mathrm{CH}}=125 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 13.9\left({ }^{1} \mathrm{~J}_{\mathrm{CH}}=125 \mathrm{~Hz}, 2 \times\right.$ $\left.\mathrm{CH}_{3}\right), 33.0\left({ }^{1} J_{\mathrm{CH}}=133 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2}\right), 39.0\left({ }^{1} J_{\mathrm{CH}}=130 \mathrm{~Hz}, 2 \times \mathrm{CH}\right)$, $40.8\left({ }^{1} \mathrm{~J}_{\mathrm{CH}}=134 \mathrm{~Hz}, 4 \times \mathrm{CH}_{3}\right), 60.5(2 \times \mathrm{C}), 60.9\left({ }^{1} \mathrm{~J}_{\mathrm{CH}}=148 \mathrm{~Hz}\right.$, $\left.2 \times \mathrm{OCH}_{2}\right), 61.4\left({ }^{1} \mathrm{~J}_{\mathrm{CH}}=148 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right), 112.2\left({ }^{1} \mathrm{~J}_{\mathrm{CH}}=156 \mathrm{~Hz}\right.$, $4 \times \mathrm{CH}, \mathrm{Ar}), 129.2(2 \times \mathrm{C}, \mathrm{Ar}), 129.3\left({ }^{1} \mathrm{~J}_{\mathrm{CH}}=154 \mathrm{~Hz}, 4 \times \mathrm{CH}, \mathrm{Ar}\right)$, $149.6(2 \times \mathrm{C}, \mathrm{Ar}), 170.1\left(2 \times \mathrm{CO}_{2} \mathrm{Et}\right), 172.1\left(2 \times \mathrm{CO}_{2} \mathrm{Et}\right)$; IR (Nujol, cm^{-1}) $2940,2875,1725,1615,1530,1375,1185,1045,955,825 ;$ MS MALDI-TOF m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{8} 610$, found [M] ${ }^{+}$610. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{8}$: C, 66.86; H, 7.59; N, 4.59. Found: C, 66.75; H, 7.50; N, 4.41.

Tetramethyl cis-2,5-Bis(4-piperidinophenyl)cyclohexane-1,1,4,4-tetracarboxylate (2 f). A solution of if $(200 \mathrm{mg}, 0.63$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}(15 \mathrm{~mL})$ was treated with $\mathrm{TiCl}_{4}(290 \mathrm{mg}, 0.17$ $\mathrm{mL}, 1.55 \mathrm{mmol}$), and the resulting mixture was stirred at $50^{\circ} \mathrm{C}$ for 3 h affording $2 \mathrm{f}(168 \mathrm{mg}, 84 \%)$ as a yellowish solid: $\mathrm{mp} 97-98^{\circ} \mathrm{C} ; R_{f} 0.70$ (diethyl ether); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.50-1.62(\mathrm{~m}, 4 \mathrm{H}$, $\left.2 \times \mathrm{CH}_{2}\right), 1.64-1.75\left(\mathrm{~m}, 8 \mathrm{H}, 4 \times \mathrm{CH}_{2}\right), 2.42\left(\mathrm{dd},{ }^{2} \mathrm{~J}=14.4 \mathrm{~Hz}\right.$, $\left.{ }^{3} \mathrm{~J}=2.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}^{a} \mathrm{H}\right), 3.09-3.14\left(\mathrm{~m}, 8 \mathrm{H}, 4 \times \mathrm{CH}_{2}\right), 3.14(\mathrm{~s}$, $6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}$), $3.22\left(\mathrm{dd},{ }^{2} \mathrm{~J}=14.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}=13.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times\right.$ $\mathrm{CH}^{b} \mathrm{H}$), $3.64\left(\mathrm{dd},{ }^{2} J=2.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=13.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}\right), 3.68(\mathrm{~s}, 6 \mathrm{H}, 2 \times$ $\left.\mathrm{OCH}_{3}\right), 6.86\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{CH}, \mathrm{Ar}\right), 7.22\left(\mathrm{~d},{ }^{3} J=8.6 \mathrm{~Hz}\right.$, $4 \mathrm{H}, 4 \times \mathrm{CH}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 24.2\left({ }^{1} \mathrm{~J}_{\mathrm{CH}}=124\right.$ $\left.\mathrm{Hz}, 2 \times \mathrm{CH}_{2}\right), 25.8\left({ }^{1} J_{\mathrm{CH}}=125 \mathrm{~Hz}, 4 \times \mathrm{CH}_{2}\right), 32.8\left({ }^{1} J_{\mathrm{CH}}=133 \mathrm{~Hz}\right.$, $\left.2 \times \mathrm{CH}_{2}\right), 39.1\left({ }^{1} \mathrm{~J}_{\mathrm{CH}}=133 \mathrm{~Hz}, 2 \times \mathrm{CH}\right), 50.7\left({ }^{1} \mathrm{~J}_{\mathrm{CH}}=136 \mathrm{~Hz}, 4 \times\right.$ $\left.\mathrm{NCH}_{2}\right), 52.0\left({ }^{1} \mathrm{~J}_{\mathrm{CH}}=147 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{3}\right), 52.8\left({ }^{1} \mathrm{~J}_{\mathrm{CH}}=147 \mathrm{~Hz}, 2 \times\right.$ $\left.\mathrm{OCH}_{3}\right), 60.5(2 \times \mathrm{C}), 115.8(4 \times \mathrm{CH}, \mathrm{Ar}), 129.2(4 \times \mathrm{CH}, \mathrm{Ar}), 131.1$ $(2 \times \mathrm{C}, \mathrm{Ar}), 151.1(2 \times \mathrm{C}, \mathrm{Ar}), 170.4\left(2 \times \mathrm{CO}_{2} \mathrm{Me}\right), 172.5(2 \times$ $\mathrm{CO}_{2} \mathrm{Me}$); IR (Nujol, cm^{-1}) 3310, 3015, 2965, 2860, 1735, 1445, 1370, 1270, 1230, 1170, 1080, 1000, 960, 935, 892, 800, 744, 690; HRMS MALDI-TOF m / z calcd 634.3254 for $\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{8}$, found [M] ${ }^{+}$ 634.3250. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{8}$: C, 68.12; H, 7.30; $\mathrm{N}, 4.41$. Found: C, 67.95; H, 7.19; N, 4.41.

Tetramethyl cis-2,5-Bis(4-pyrrolidinophenyl)cyclohexane-1,1,4,4-tetracarboxylate (2g). A solution of $1 \mathrm{~g}(200 \mathrm{mg}, 0.66$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}(14 \mathrm{~mL})$ was treated with $\mathrm{TiCl}_{4}(300 \mathrm{mg}, 0.18$ $\mathrm{mL}, 1.6 \mathrm{mmol}$), and the resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 2.5 h affording $2 \mathrm{~g}(116 \mathrm{mg}, 58 \%)$ as a white solid: $\mathrm{mp} 241-242^{\circ} \mathrm{C}$ dec; R_{f} 0.15 (diethyl ether); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 1.97-2.05(\mathrm{~m}$, $\left.8 \mathrm{H}, 4 \times \mathrm{CH}_{2}\right), 2.42\left(\mathrm{dd},{ }^{2} J=14.4 \mathrm{~Hz},{ }^{3} J=2.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}^{a} \mathrm{H}\right)$, $3.19\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.20\left(\mathrm{dd},{ }^{2} \mathrm{~J}=14.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}=13.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times\right.$ $\left.\mathrm{CH}^{b} \mathrm{H}\right), 3.24-3.30\left(\mathrm{~m}, 8 \mathrm{H}, 4 \times \mathrm{CH}_{2} \mathrm{~N}\right), 3.64\left(\mathrm{dd},{ }^{3} \mathrm{~J}=2.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=\right.$ $13.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}), 3.70\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 6.48\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz}\right.$, $4 \mathrm{H}, 4 \times \mathrm{CH}, \mathrm{Ar}), 7.21\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{CH}, \mathrm{Ar}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 25.4\left({ }^{1} \mathrm{~J}_{\mathrm{CH}}=131 \mathrm{~Hz}, 4 \times \mathrm{CH}_{2}\right), 33.1\left({ }^{1} \mathrm{~J}_{\mathrm{CH}}=133\right.$ $\left.\mathrm{Hz}, 2 \times \mathrm{CH}_{2}\right), 39.1\left({ }^{1} \mathrm{~J}_{\mathrm{CH}}=130 \mathrm{~Hz}, 2 \times \mathrm{CH}\right), 47.7\left({ }^{1} \mathrm{~J}_{\mathrm{CH}}=139 \mathrm{~Hz}\right.$, $\left.4 \times \mathrm{NCH}_{2}\right), 51.9\left({ }^{1} \mathrm{~J}_{\mathrm{CH}}=147 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{3}\right), 52.6\left({ }^{1}{ }_{\mathrm{JH}}=147 \mathrm{~Hz}, 2\right.$ $\left.\times \mathrm{OCH}_{3}\right), 60.8(2 \times \mathrm{C}), 111.1(4 \times \mathrm{CH}, \mathrm{Ar}), 127.5(2 \times \mathrm{C}, \mathrm{Ar})$, $129.3(4 \times \mathrm{CH}, \mathrm{Ar}), 147.0(2 \times \mathrm{C}), 170.5\left(2 \times \mathrm{CO}_{2} \mathrm{Me}\right), 172.6(2 \times$ $\mathrm{CO}_{2} \mathrm{Me}$); IR (Nujol, cm^{-1}) 2940, 2875, 1725, 1615, 1530, 1470, 1380, 1340, 1260, 1230, 1180, 1120, 1055, 1040, 975, 940, 840, 825, 795, 740; HRMS MALDI-TOF m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{8}$ 606.2941, found $[\mathrm{M}]^{+}$606.2946. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{8}: \mathrm{C}, 67.31 ; \mathrm{H}, 6.98 ; \mathrm{N}$, 4.62. Found: C, 67.29; H, 6.95; N, 4.62.

Tetramethyl cis-2,5-Bis(4-morpholinophenyl)cyclohexane-1,1,4,4-tetracarboxylate (2h). A solution of $\mathbf{1 h}(300 \mathrm{mg}, 0.94$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}(14 \mathrm{~mL})$ was treated with $\mathrm{TiCl}_{4}(370 \mathrm{mg}, 0.21$ $\mathrm{mL}, 1.97 \mathrm{mmol}$), and the resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 3 h affording $2 \mathrm{~h}(250 \mathrm{mg}, 83 \%)$ as a cream-colored solid: $\mathrm{mp} 249-250^{\circ} \mathrm{C}$ dec; $R_{f} 0.80\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $2.42\left(\mathrm{dd},{ }^{2} \mathrm{~J}=14.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}=2.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}^{a} \mathrm{H}\right), 3.10-3.13(\mathrm{~m}$, $\left.8 \mathrm{H}, 4 \times \mathrm{CH}_{2}\right), 3.14\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.17\left(\mathrm{dd},{ }^{2} J=14.4 \mathrm{~Hz}\right.$, $\left.{ }^{3} J=13.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}{ }^{b} \mathrm{H}\right), 3.67\left(\mathrm{dd},{ }^{3} J=2.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=13.1 \mathrm{~Hz}, 2 \mathrm{H}\right.$,
$2 \times \mathrm{CH}), 3.69\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.81-3.85\left(\mathrm{~m}, 8 \mathrm{H}, 4 \times \mathrm{CH}_{2}\right), 6.81$ (d, $\left.{ }^{3} J=8.7 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{CH}, \mathrm{Ar}\right), 7.24\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.7 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{CH}\right.$, $\mathrm{Ar})$; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 32.5\left({ }^{1}{ }^{1} \mathrm{CH}=132 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2}\right)$, $38.8\left({ }^{1} J_{\mathrm{CH}}=130 \mathrm{~Hz}, 2 \times \mathrm{CH}\right), 48.9\left({ }^{1} J_{\mathrm{CH}}=134 \mathrm{~Hz}, 4 \times \mathrm{NCH}_{2}\right), 51.4$ $\left({ }^{1} J_{\mathrm{CH}}=147 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{3}\right), 52.3\left({ }^{1} J_{\mathrm{CH}}=147 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{3}\right), 60.1$ $(2 \times \mathrm{C}), 66.4\left({ }^{1} J_{\mathrm{CH}}=144 \mathrm{~Hz}, 4 \times \mathrm{OCH}_{2}\right), 114.5(4 \times \mathrm{CH}), 129.0$ $(4 \times \mathrm{CH})$, $131.7(2 \times \mathrm{C})$, $149.7(2 \times \mathrm{C}), 169.8\left(2 \times \mathrm{CO}_{2} \mathrm{Me}\right), 171.9$ $\left(2 \times \mathrm{CO}_{2} \mathrm{Me}\right)$; IR (Nujol, $\left.\mathrm{cm}^{-1}\right) 2960,2880,1725,1620,1525,1470$, 1385, 1275, 1250, 1225, 1130, 1060, 1045, 940, 845, 735; HRMS MALDI-TOF m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{10}$ 638.2839, found [M] ${ }^{+}$ 638.2844. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{10}$: C, 63.94; $\mathrm{H}, 6.63 ; \mathrm{N}, 4.39$. Found: C, 63.94; H, 6.58; N, 4.58.
Tetramethyl cis-2,5-Bis(4-methoxyphenyl)cyclohexane-1,1,4,4-tetracarboxylate (2i). A solution of $\mathrm{TiCl}_{4}(290 \mathrm{mg}, 0.17$ $\mathrm{mL}, 0.15 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}(1 \mathrm{~mL})$ was added to a solution of $\mathbf{1 i}$ $(200 \mathrm{mg}, 0.75 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}(7 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$. The resulting mixture was allowed to warm to $5{ }^{\circ} \mathrm{C}$ for 1 h , kept at this temperature for 2 h , and worked up as described above to yield $\mathbf{2 i}(90 \mathrm{mg}, 45 \%)$ as colorless crystals: mp $174-175^{\circ} \mathrm{C} ; R_{f} 0.44$ (diethyl ether/hexane 1:1); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.41\left(\mathrm{dd},{ }^{2} J=14.4 \mathrm{~Hz},{ }^{3} J=2.8 \mathrm{~Hz}\right.$, $\left.2 \mathrm{H}, 2 \times \mathrm{CH}^{a} \mathrm{H}\right), 3.15\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.19\left(\mathrm{dd},{ }^{2} \mathrm{~J}=14.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}=\right.$ $\left.13.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}^{b} \mathrm{H}\right), 3.68\left(\mathrm{dd},{ }^{3} \mathrm{~J}=2.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}=13.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times\right.$ CH), $3.71\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.79\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 6.82\left(\mathrm{~d},{ }^{3} \mathrm{~J}=\right.$ $8.7 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{CH}, \mathrm{Ar}), 7.28\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.7 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{CH}, \mathrm{Ar}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 32.9\left(2 \times \mathrm{CH}_{2}\right)$, $39.1(2 \times \mathrm{CH})$, 52.0 $\left(2 \times \mathrm{OCH}_{3}\right), 52.9\left(2 \times \mathrm{OCH}_{3}\right), 55.2\left(2 \times \mathrm{OCH}_{3}\right), 60.5(2 \times \mathrm{C})$, $113.2(4 \times \mathrm{CH}, \mathrm{Ar}), 129.7(4 \times \mathrm{CH}, \mathrm{Ar}), 132.7(2 \times \mathrm{C}, \mathrm{Ar}), 158.4$ $(2 \times \mathrm{C}, \mathrm{Ar}), 170.3\left(2 \times \mathrm{CO}_{2} \mathrm{Me}\right), 172.4\left(2 \times \mathrm{CO}_{2} \mathrm{Me}\right)$; IR (Nujol, cm^{-1}) 2950, 2860, 1720, 1610, 1520, 1465, 1380, 1135, 1040, 935, 850, 745; GC-MS m/z 528 (85) [M] ${ }^{+}, 347$ (94), 265 (72), 207 (80), 145 (94), 134 (100), 121 (45); MS MALDI-TOF m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{10} 528$, found [M] ${ }^{+} 528$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{10}$: C, 63.63; H, 6.10. Found: C, 63.75; H, 6.15.

Tetraethyl cis-2,5-Bis(4-methoxyphenyl)cyclohexane-1,1,4,4-tetracarboxylate (2j). AlCl_{3} ($150 \mathrm{mg}, 1.1 \mathrm{mmol}$) was added in one portion to a solution of $\mathbf{1 j}(130 \mathrm{mg}, 0.45 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}(9 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$. The resulting mixture was allowed to warm to room temperature for 1 h , kept at this temperature for 1 h , and worked up as described above to yield 2 j ($80 \mathrm{mg}, 62 \%$) as colorless crystals: mp $105-106{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}} 0.21$ (diethyl ether/hexane 1:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.78\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right)$, $1.15\left(\mathrm{t},{ }^{3} J=7.1 \mathrm{~Hz}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 2.39\left(\mathrm{dd},{ }^{2} J=14.4 \mathrm{~Hz},{ }^{3} J=2.9 \mathrm{~Hz}\right.$, $2 \mathrm{H}, 2 \times \mathrm{CH}^{a} \mathrm{H}$), $3.17\left(\mathrm{dd},{ }^{2} \mathrm{~J}=14.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}=12.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times\right.$ $\left.\mathrm{CH}^{b} \mathrm{H}\right), 3.43-3.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.63-3.71\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.77$ $\left(\mathrm{s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right) 3.78\left(\mathrm{dd},{ }^{3} \mathrm{~J}=2.9 \mathrm{~Hz},{ }^{3} J=12.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}\right)$, $4.09-4.26\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{OCH}_{2}\right), 6.79\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{CH}, \mathrm{Ar}\right)$, $7.28\left(\mathrm{~d},{ }^{3} J=8.8 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{CH}, \mathrm{Ar}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ $\delta 13.4\left(2 \times \mathrm{CH}_{3}\right), 13.9\left(2 \times \mathrm{CH}_{3}\right), 33.1\left(2 \times \mathrm{CH}_{2}\right), 39.1(2 \times \mathrm{CH})$, $55.2\left(2 \times \mathrm{OCH}_{3}\right), 60.3(2 \times \mathrm{C}), 61.0\left(2 \times \mathrm{OCH}_{2}\right), 61.6\left(2 \times \mathrm{OCH}_{2}\right)$, $113.1(4 \times \mathrm{CH}, \mathrm{Ar}), 129.8(4 \times \mathrm{CH}, \mathrm{Ar}), 133.2(2 \times \mathrm{C}, \mathrm{Ar}), 158.4$ $(2 \times \mathrm{C}, \mathrm{Ar}), 169.9\left(2 \times \mathrm{CO}_{2} \mathrm{Et}\right), 171.9\left(2 \times \mathrm{CO}_{2} \mathrm{Et}\right)$; IR $\left(\mathrm{Nujol}, \mathrm{cm}^{-1}\right)$ 2955, 1720, 1615, 1520, 1460, 1380, 1130, 1115, 1055, 870, 850; MS MALDI-TOF m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{O}_{10} 584$, found [M] ${ }^{+}$584. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{O}_{10}$: C, 65.74; H, 6.90. Found: C, $65.60 ; \mathrm{H}, 6.93$.
Tetraethyl (5E)-3,6-Bis(2,4,6-trimethoxyphenyl)hex-5-ene-1,1,4,4-tetracarboxylate (3a). $\mathrm{AlCl}_{3}(70 \mathrm{mg}, 0.53 \mathrm{mmol})$ was added in one portion to a solution of $1 \mathbf{1 a}(180 \mathrm{mg}, 0.51 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-50{ }^{\circ} \mathrm{C}(10 \mathrm{~mL})$. The resulting mixture was warmed to $-25^{\circ} \mathrm{C}$ and kept at this temperature for 1 h , and then it was warmed up to $5^{\circ} \mathrm{C}$, kept at this temperature for additional 22 h , and worked up as described above to yield $\mathbf{3 a}$ ($126 \mathrm{mg}, 70 \%$) as a colorless oil: $R_{f} 0.54$ (diethyl ether); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.12\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}\right.$, $3 \mathrm{H}, \mathrm{CH}_{3}$), $1.20\left(\mathrm{t},{ }^{3} J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.27\left(\mathrm{t},{ }^{3} J=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\left.\mathrm{CH}_{3}\right), 1.31\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.55\left(\mathrm{ddd},{ }^{2} \mathrm{~J}=13.6 \mathrm{~Hz},{ }^{3} J=3.6\right.$ $\mathrm{Hz},{ }^{3} J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}^{a} \mathrm{H}$), 2.82 (ddd, ${ }^{2} J=13.6 \mathrm{~Hz},{ }^{3} J=5.6 \mathrm{~Hz},{ }^{3} J=$ $12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}^{\mathrm{b}} \mathrm{H}$), $3.07\left(\mathrm{dd},{ }^{3} J=5.6,{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 3.52(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.66\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.77(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.83-3.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.05$ $\left(\mathrm{dq},{ }^{2} J=10.8 \mathrm{~Hz},{ }^{3} J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.12-4.27(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 4.34\left(\mathrm{dq},{ }^{2} \mathrm{~J}=10.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.43(\mathrm{dd}$,
$\left.{ }^{3} J=3.6 \mathrm{~Hz},{ }^{3} J=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 5.96\left(\mathrm{~d},{ }^{4} J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}\right), 6.02$ $\left(\mathrm{d},{ }^{4} \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}\right), 6.04(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}), 6.45\left(\mathrm{~d},{ }^{3} \mathrm{~J}=17.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{CH}=), 6.77\left(\mathrm{~d},{ }^{3} \mathrm{~J}=17.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta 13.9\left(2 \times \mathrm{CH}_{3}\right), 14.1\left(2 \times \mathrm{CH}_{3}\right), 28.9\left(\mathrm{CH}_{2}\right), 39.3(\mathrm{CH})$, $51.5(\mathrm{CH}), 54.9\left(\mathrm{OCH}_{3}\right), 55.1\left(\mathrm{OCH}_{3}\right), 55.2\left(\mathrm{OCH}_{3}\right), 55.4\left(\mathrm{OCH}_{3}\right)$, $55.5\left(2 \times \mathrm{OCH}_{3}\right), 60.6\left(\mathrm{OCH}_{2}\right), 60.8\left(\mathrm{OCH}_{2}\right), 60.9\left(2 \times \mathrm{OCH}_{2}\right)$, $64.0(\mathrm{C}), 90.1(\mathrm{CH}), 90.3(\mathrm{CH}), 90.5(2 \times \mathrm{CH}), 107.2(\mathrm{C}), 108.1$ (C), $120.0(\mathrm{CH}), 129.1(\mathrm{CH}), 159.2(2 \times \mathrm{C}), 159.6(\mathrm{C}), 160.08(\mathrm{C})$, 160.14 (C), 160.5 (C), $169.5\left(\mathrm{CO}_{2} \mathrm{Et}\right), 170.1\left(\mathrm{CO}_{2} \mathrm{Et}\right), 170.5$ $\left(\mathrm{CO}_{2} \mathrm{Et}\right), 172.9\left(\mathrm{CO}_{2} \mathrm{Et}\right)$; IR (Nujol, $\left.\mathrm{cm}^{-1}\right)$ 2960, 2860, 1730, 1600, 1470, 1380; MS MALDI-TOF m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{O}_{14}$ 704, found [M] ${ }^{+}$704. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{O}_{14}: \mathrm{C}, 61.35 ; \mathrm{H}, 6.86$. Found: C, 61.44; H, 6.75.

Tetramethyl (5E)-3,6-Bis(2,4,6-trimethoxyphenyl)hex-5-ene-1,1,4,4-tetracarboxylate (3b). Method A. $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ ($78 \mathrm{mg}, 0.07$ $\mathrm{mL}, 0.55 \mathrm{mmol}$) was added in one portion to a solution of $\mathbf{1 b}$ (150 $\mathrm{mg}, 0.46 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ at room temperature. The resulting mixture was heated under reflux for 6 h and worked up as described above to yield $3 \mathbf{b}$ ($128 \mathrm{mg}, 85 \%$).

Method B. $\mathrm{ZnCl}_{2}(300 \mathrm{mg}, 2.2 \mathrm{mmol})$ was added in one portion to a solution of $\mathbf{1 b}(180 \mathrm{mg}, 0.55 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$. The resulting mixture was heated under reflux for 6 h and worked up as described above to yield $\mathbf{3 b}$ ($154 \mathrm{mg}, 86 \%$): colorless foam; $\mathrm{mp} 70-71$ ${ }^{\circ} \mathrm{C} ; R_{f} 0.48$ (diethyl ether); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.53$ (ddd, $\left.{ }^{2} J=13.6 \mathrm{~Hz},{ }^{3} J=3.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}^{a} \mathrm{H}\right), 2.78\left(\mathrm{ddd},{ }^{2} J=\right.$ $\left.13.6 \mathrm{~Hz},{ }^{3} J=6.2 \mathrm{~Hz},{ }^{3} J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}^{\mathrm{b}} \mathrm{H}\right), 3.12\left(\mathrm{dd},{ }^{3} \mathrm{~J}=6.2 \mathrm{~Hz}\right.$, $\left.{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 3.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.62$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.65\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.71(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.78(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 4.37\left(\mathrm{dd},{ }^{3} \mathrm{~J}=3.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 5.96\left(\mathrm{~d},{ }^{4} J=\right.$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{Ar}), 6.01\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{Ar}\right), 6.02(\mathrm{~s}, 2 \mathrm{H}$, $2 \times \mathrm{CH}, \mathrm{Ar}), 6.38\left(\mathrm{~d},{ }^{3} J=17.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\right), 6.70\left(\mathrm{~d},{ }^{3} \mathrm{~J}=17.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{CH}=)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 29.0\left(\mathrm{CH}_{2}\right), 39.4(\mathrm{CH})$, $51.3(\mathrm{CH}), 51.9\left(\mathrm{OCH}_{3}\right), 52.0\left(\mathrm{OCH}_{3}\right), 52.2\left(2 \times \mathrm{OCH}_{3}\right), 55.0$ $\left(\mathrm{OCH}_{3}\right), 55.1\left(\mathrm{OCH}_{3}\right), 55.2\left(\mathrm{OCH}_{3}\right), 55.5\left(\mathrm{OCH}_{3}\right), 55.6(2 \times$ $\left.\mathrm{OCH}_{3}\right), 64.3(\mathrm{C}), 90.2(\mathrm{CH}), 90.4(\mathrm{CH}), 90.7(2 \times \mathrm{CH}), 106.9(\mathrm{C})$, 108.0 (C), $120.1(\mathrm{CH}=), 128.8(\mathrm{CH=}), 159.2(2 \times \mathrm{C}), 159.8(\mathrm{C})$, 160.0 (C), 160.3 (C), 160.4 (C), $169.8\left(\mathrm{CO}_{2} \mathrm{Me}\right), 170.2\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, $171.1\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, $171.4\left(\mathrm{CO}_{2} \mathrm{Me}\right)$; IR ($\mathrm{Nujol}, \mathrm{cm}^{-1}$) 2940, 2870, 1730, $1605,1470,1380,1335,1240,1205,1160,1130,1070,1030,960,820$, 730; MS MALDI-TOF m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{O}_{14} 648$, found [M] 648 . Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{O}_{14}$: C, $59.25 ; \mathrm{H}, 6.22$. Found: C, $59.30 ; \mathrm{H}$, 6.39 .

Tetraethyl (5E)-3,6-Bis(3-bromo-2,4,6-trimethoxyphenyl)-hex-5-ene-1,1,4,4-tetracarboxylate (3c). A solution of SnCl_{4} $(216 \mathrm{mg}, 0.097 \mathrm{~mL}, 0.83 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added to a solution of $1 \mathbf{c}(180 \mathrm{mg}, 0.42 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$. The resulting mixture was kept at $-20^{\circ} \mathrm{C}$ for 20 h , warmed to room temperature, and worked up as described above to yield 3 c (136 mg , 75%) as a colorless solid: mp $107-108{ }^{\circ} \mathrm{C}$; $R_{f} 0.55$ (diethyl ether); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 1.11\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.20(\mathrm{t}$, $\left.{ }^{3} J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.23\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.31\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.2\right.$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.55 (ddd, ${ }^{2} J=14.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}^{a} \mathrm{H}\right), 2.73\left(\mathrm{ddd},{ }^{2} \mathrm{~J}=14.0 \mathrm{~Hz},{ }^{3} J=7.0 \mathrm{~Hz},{ }^{3} J=11.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{CH}^{\mathrm{b}} \mathrm{H}$), $3.18\left(\mathrm{dd},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 3.63(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $3.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.74(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.76-3.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.85-3.93\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.86$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.11-4.17\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.30$ $\left(\mathrm{dq},{ }^{2} J=9.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.39\left(\mathrm{dd},{ }^{3} J=11.6 \mathrm{~Hz},{ }^{3} J=\right.$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{Ar}), 6.23(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{Ar}), 6.28$ (d, $\left.{ }^{3} J=17.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\right), 6.73\left(\mathrm{~d},{ }^{3} \mathrm{~J}=17.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 13.5\left(2 \times \mathrm{CH}_{3}\right), 13.7\left(2 \times \mathrm{CH}_{3}\right), 29.1$ $\left(\mathrm{CH}_{2}\right), 41.1(\mathrm{CH}), 50.7(\mathrm{CH}), 54.6\left(\mathrm{OCH}_{3}\right), 55.0\left(\mathrm{OCH}_{3}\right), 55.9(2 \times$ $\left.\mathrm{OCH}_{3}\right), 60.1\left(\mathrm{OCH}_{3}\right), 60.4\left(\mathrm{OCH}_{3}\right), 60.5\left(\mathrm{OCH}_{2}\right), 60.6\left(\mathrm{OCH}_{2}\right)$, $60.8\left(\mathrm{OCH}_{2}\right), 61.0\left(\mathrm{OCH}_{2}\right), 64.2(\mathrm{C}), 91.7(\mathrm{CH}), 92.1(\mathrm{CH}), 97.5$ (C), 98.0 (C), 113.1 (C), 114.4 (C), 120.2 (CH), 131.2 (CH), 155.6 (C), 156.0 (C), 156.3 (C), 157.6 (C), 157.8 (C), 158.9 (C), 168.9 $\left(\mathrm{CO}_{2} \mathrm{Et}\right), 169.3\left(\mathrm{CO}_{2} \mathrm{Et}\right), 169.8\left(\mathrm{CO}_{2} \mathrm{Et}\right)$, $170.2\left(\mathrm{CO}_{2} \mathrm{Et}\right)$; IR (Nujol, cm^{-1}) 2940, 2870, 1730, 1600, 1475, 1380, 1320, 1120, 1025, 925, 815, 730; MS MALDI-TOF m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{Br}_{2} \mathrm{O}_{14} 860$, found
$[\mathrm{M}]^{+}$860. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{Br}_{2} \mathrm{O}_{14}: \mathrm{C}, 50.13 ; \mathrm{H}, 5.38$. Found C, 49.95; H, 5.49.

Dimethyl 6-Methoxy-1-(3-methoxy-2-(methoxycarbonyl)-3-oxopropyl)-4-(4-methoxyphenyl)-3,4-dihydronaphtalene-2,2-(1H)-dicarboxylate (7a). A solution of $\mathrm{SnCl}_{4}(260 \mathrm{mg}, 0.12 \mathrm{~mL}, 1.0$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}(1 \mathrm{~mL})$ was added to a solution of $1 \mathrm{i}(260 \mathrm{mg}$, $1.00 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{H}_{6}(13 \mathrm{~mL})$ at room temperature, and the resulting mixture was stirred for 24 h affording $7 \mathrm{a}(210 \mathrm{mg}, 81 \%$, dr 91:9). (1RS,4RS)-7a (major isomer): white crystals; mp 72-73 ${ }^{\circ} \mathrm{C}$; $R_{f} 0.28$ (diethyl ether/hexane $1: 1) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.02$ (ddd, $\left.{ }^{2} J=13.6 \mathrm{~Hz},{ }^{3} J=5.1 \mathrm{~Hz},{ }^{3} J=10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.12\left(\mathrm{ddd},{ }^{2} J=13.6\right.$ $\left.\mathrm{Hz},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.34\left(\mathrm{dd},{ }^{2} \mathrm{~J}=14.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}=\right.$ $11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 2.75 (ddd, ${ }^{2} J=14.4 \mathrm{~Hz},{ }^{3} J=7.2 \mathrm{~Hz},{ }^{4} J=1.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2}$), $3.44\left(\mathrm{ddd},{ }^{3} J=3.0 \mathrm{~Hz},{ }^{3} J=10.6 \mathrm{~Hz},{ }^{4} J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right)$, $3.60\left(\mathrm{dd},{ }^{3} J=5.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}=10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}\right)$, $3.61(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $3.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.79(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.90\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.2\right.$ $\left.\mathrm{Hz},{ }^{3} \mathrm{~J}=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 6.35\left(\mathrm{~d},{ }^{4} J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{Ar}\right), 6.73$ (dd, $\left.{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{Ar}\right), 6.86$ (br.d, ${ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}$, $2 \times \mathrm{CH}, \mathrm{Ar}), 7.09-7.11(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{CH}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta 33.2\left(\mathrm{CH}_{2}\right), 33.9\left(\mathrm{CH}_{2}\right), 40.1(\mathrm{CH}), 42.8(\mathrm{CH}), 49.5$ $\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}\right), 52.7\left(\mathrm{OCH}_{3}\right), 52.8\left(3 \times \mathrm{OCH}_{3}\right), 55.2\left(\mathrm{OCH}_{3}\right), 55.3$ $\left(\mathrm{OCH}_{3}\right), 58.6(\mathrm{C}), 112.3(\mathrm{CH}, \mathrm{Ar}), 114.1(2 \times \mathrm{CH}, \mathrm{Ar}), 115.2(\mathrm{CH}$, Ar), 129.6 ($2 \times \mathrm{CH}, \mathrm{Ar}$), 129.9 (C, Ar), 130.3 (CH, Ar), 137.8 (C, $\mathrm{Ar}), 138.5(\mathrm{C}, \mathrm{Ar}), 158.3(2 \times \mathrm{C}, \mathrm{Ar}), 169.4\left(\mathrm{CO}_{2} \mathrm{Me}\right), 169.5$ $\left(\mathrm{CO}_{2} \mathrm{Me}\right), 170.3\left(\mathrm{CO}_{2} \mathrm{Me}\right), 170.5\left(\mathrm{CO}_{2} \mathrm{Me}\right)$; IR ($\mathrm{Nujol}, \mathrm{cm}^{-1}$) 2960, 2870, 1735, 1610, 1515, 1470, 1360, 1055, 845, 740; GC-MS m/z 528 (96) [M] ${ }^{+}, 362$ (32), 347 (100), 265 (72), 207 (63), 145 (72), 134 (70), 121 (25); MS MALDI-TOF m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{10} 528$, found $[\mathrm{M}]^{+} 528$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{10}$: C, 63.63; H, 6.10. Found: C, 63.81; H, 6.21.
Diethyl 1-[3-Ethoxy-2-(ethoxycarbonyl)-3-oxopropyl]-6-me-thoxy-4-(4-methoxyphenyl)-3,4-dihydronaphthalene-2,2(1H)dicarboxylate (7b). A solution of $\mathrm{SnCl}_{4}(260 \mathrm{mg}, 0.12 \mathrm{~mL}, 1.0$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}(1 \mathrm{~mL})$ was added to a solution of $1 \mathrm{j}(290 \mathrm{mg}, 1.0$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}(13 \mathrm{~mL})$ at $-25^{\circ} \mathrm{C}$. The resulting mixture was warmed to room temperature for 3 h and worked up as described above to yield 7b ($240 \mathrm{mg}, 80 \%$, dr $90: 10$). (1 RS, $\mathbf{4 R S}$)-7b (major isomer): colorless oil; $R_{f} 0.31$ (diethyl ether/hexane 1:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.13\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.23\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1\right.$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.30\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.36\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\left.\mathrm{CH}_{3}\right), 2.03\left(\mathrm{ddd},{ }^{2} J=13.7 \mathrm{~Hz},{ }^{3} J=4.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$, 2.17 (ddd, ${ }^{2} J=13.7 \mathrm{~Hz},{ }^{3} J=3.2 \mathrm{~Hz},{ }^{3} J=10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $2.34(\mathrm{dd}$, $\left.{ }^{2} J=14.4 \mathrm{~Hz},{ }^{3} J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.75\left(\mathrm{ddd},{ }^{2} J=14.4 \mathrm{~Hz},{ }^{3} J=7.2\right.$ $\mathrm{Hz},{ }^{4} \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $3.50\left(\mathrm{ddd},{ }^{3} J=3.2 \mathrm{~Hz},{ }^{3} J=10.9 \mathrm{~Hz},{ }^{4} J=\right.$ $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $3.55\left(\mathrm{dd},{ }^{3} \mathrm{~J}=4.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=10.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}\right), 3.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.92(\mathrm{dd}$, $\left.{ }^{3} J=7.2 \mathrm{~Hz},{ }^{3} J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 4.05-4.17\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.18-$ $4.37\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.36\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{Ar}\right), 6.73\left(\mathrm{dd},{ }^{3} \mathrm{~J}=\right.$ $\left.8.6 \mathrm{~Hz},{ }^{4} J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{Ar}\right), 6.86$ (br.d, ${ }^{3} J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}$, $\mathrm{Ar}), 7.09-7.11(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{CH}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ $13.9\left(\mathrm{CH}_{3}\right), 14.0\left(2 \times \mathrm{CH}_{3}\right), 14.2\left(\mathrm{CH}_{3}\right), 33.2\left(\mathrm{CH}_{2}\right), 33.7\left(\mathrm{CH}_{2}\right)$, $39.9(\mathrm{CH}), 42.8(\mathrm{CH}), 49.7\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right), 55.0\left(\mathrm{OCH}_{3}\right), 55.3$ $\left(\mathrm{OCH}_{3}\right), 58.6(\mathrm{C}), 61.4\left(\mathrm{OCH}_{2}\right), 61.5\left(2 \times \mathrm{OCH}_{2}\right), 61.8\left(\mathrm{OCH}_{2}\right)$, 112.2 (CH, Ar), $114.1(2 \times \mathrm{CH}, \mathrm{Ar}), 115.0(\mathrm{CH}, \mathrm{Ar}), 129.6(2 \times \mathrm{CH}$, Ar), 130.2 (C, Ar), 130.5 (CH, Ar), 138.1 (C, Ar), 138.6 (C, Ar), $158.3(2 \times \mathrm{C}, \mathrm{Ar}), 169.1\left(\mathrm{CO}_{2} \mathrm{Et}\right), 169.2\left(\mathrm{CO}_{2} \mathrm{Et}\right), 169.9\left(\mathrm{CO}_{2} \mathrm{Et}\right)$, $170.1\left(\mathrm{CO}_{2} \mathrm{Et}\right)$; IR (Nujol, cm^{-1}) 2990, 1740, 1610, 1510, 1470, 1380, 1050, 870, 850; HRMS MALDI-TOF m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{O}_{10}$ 584.2621, found $[\mathrm{M}]^{+}$584.2618. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{O}_{10}$: C, 65.74; H, 6.90. Found: C, 65.84; H, 7.08.

Dimethyl 4-(3,4-dimethoxyphenyl)-6,7-dimethoxy-1-(3-me-thoxy-2-(methoxycarbonyl)-3-oxopropyl)-3,4-dihydronaphta-lene-2,2(1H)-dicarboxylate (7c). A solution of $\mathrm{SnCl}_{4}(318 \mathrm{mg}$, $0.14 \mathrm{~mL}, 1.22 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}(1 \mathrm{~mL})$ was added to a solution of $1 \mathrm{k}(300 \mathrm{mg}, 1.02 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}(14 \mathrm{~mL})$ at $-25{ }^{\circ} \mathrm{C}$. The resulting mixture was kept at $-25{ }^{\circ} \mathrm{C}$ for 22 h , warmed to room temperature, and worked up as described above to yield $7 \mathrm{c}(210 \mathrm{mg}$, 71%, dr 55:45) as colorless oil: $R_{f} 0.44$ (diethyl ether/methanol 20:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ for mixture of diastereomers $\delta 1.98$ -
$2.17\left(\mathrm{~m}, 2 \mathrm{H}+2 \mathrm{H}, \mathrm{CH}_{2}, \mathbf{A}+\mathbf{B}\right), 2.29-2.36\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}, \mathbf{A}\right), 2.58-$ 2.67 (ddd, $\left.{ }^{2} J=14.6 \mathrm{~Hz},{ }^{3} J=3.2 \mathrm{~Hz},{ }^{4} J=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}, \mathbf{B}\right), 2.77$ (ddd, $\left.{ }^{2} J=14.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{~A}\right), 2.91(\mathrm{dd}$, $\left.{ }^{2} J=14.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}, \mathbf{B}\right), 3.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}, \mathbf{A}\right), 3.41-$ $3.46(\mathrm{~m}, 1 \mathrm{H}+1 \mathrm{H}, \mathrm{CH}, \mathbf{A}, \mathbf{B}), 3.52\left(\mathrm{dd},{ }^{3} \mathrm{~J}=10.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{CH}, \mathbf{B}), 3.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}, \mathbf{B}\right), 3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}, \mathbf{B}\right), 3.66(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}, \mathbf{A}\right), 3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}, \mathbf{A}\right), 3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}, \mathbf{B}\right), 3.72-3.75$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}, \mathbf{A}), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}, \mathbf{B}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}, \mathbf{B}\right), 3.81$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}, \mathbf{A}$), 3.83 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}, \mathbf{A}$), $3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}, \mathbf{B}\right)$, $3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}, \mathbf{A}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}, \mathbf{B}\right), 3.89-3.92(\mathrm{~m}, 1 \mathrm{H}$, CH, A), $3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}, \mathbf{A}\right), 3.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}, \mathbf{B}\right), 3.96(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}, \mathbf{A}\right), 4.27\left(\mathrm{dd},{ }^{3} \mathrm{~J}=3.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}, \mathbf{B}\right), 6.32(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}, \mathrm{Ar}, \mathbf{B}), 6.39(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{Ar}, \mathrm{A}), 6.46\left(\mathrm{dd},{ }^{3} J=8.3 \mathrm{~Hz},{ }^{4} J=2.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{CH}, \mathrm{Ar}, \mathbf{B}), 6.58\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{Ar}, \mathbf{B}\right), 6.68(\mathrm{~s}, 1 \mathrm{H}+1 \mathrm{H}$, $\mathrm{CH}, \mathrm{Ar}, \mathbf{A}+\mathbf{B}), 6.74\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{Ar}, \mathbf{B}\right), 6.75\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.3\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{Ar}, \mathrm{A}), 6.79(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{Ar}, \mathrm{A}), 6.84\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{CH}, \mathrm{Ar}, \mathrm{A})$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$) for mixture of diastereomers $\delta 32.1\left(\mathrm{CH}_{2}, \mathbf{A}\right), 33.0\left(\mathrm{CH}_{2}, \mathbf{A}\right), 33.3\left(\mathrm{CH}_{2}, \mathbf{B}\right), 33.7$ $\left(\mathrm{CH}_{2}, \mathbf{B}\right), 40.5(\mathrm{CH}, \mathbf{A}), 40.7(2 \times \mathrm{CH}, \mathbf{A}, \mathbf{B}), 42.6(\mathrm{CH}, \mathbf{B}), 49.8$ $(\mathrm{CH}, \mathrm{B}), 49.9(\mathrm{CH}, \mathbf{A}), 52.1\left(\mathrm{OCH}_{3}\right), 52.57\left(2 \times \mathrm{OCH}_{3}\right), 52.64$ $\left(\mathrm{OCH}_{3}\right), 52.68\left(2 \times \mathrm{OCH}_{3}\right), 52.81\left(\mathrm{OCH}_{3}\right), 52.84\left(\mathrm{OCH}_{3}\right), 55.56$ $\left(\mathrm{OCH}_{3}\right), 55.61\left(\mathrm{OCH}_{3}\right), 55.68\left(2 \times \mathrm{OCH}_{3}\right), 55.76\left(2 \times \mathrm{OCH}_{3}\right)$, $55.81\left(2 \times \mathrm{OCH}_{3}\right), 57.1(\mathrm{C}, \mathbf{B}), 58.5(\mathrm{C}, \mathbf{A}), 110.6(\mathrm{CH}, \mathbf{A}), 111.1$ $(\mathrm{CH}, \mathbf{B}), 111.3(\mathrm{CH}, \mathbf{B}), 111.6(2 \times \mathrm{CH}, \mathbf{A}+\mathbf{B}), 112.1(\mathrm{CH}, \mathbf{A})$, 112.5 (CH, B), $113.0(\mathrm{CH}, \mathbf{A}), 120.5(\mathrm{CH}, \mathbf{B}), 121.0(\mathrm{CH}, \mathbf{A}), 127.8$ (C, A), 128.7 (C, B), 129.5 (C, B), 129.7 (C, A), $138.7(2 \times$ C, A, B), $147.1(2 \times$ C, A), 147.3 (C, B), $147.6(2 \times$ C, A, B), 147.8 (C, B), 148.5 (C, A), 149.1 (C, B), $169.16\left(\mathrm{CO}_{2} \mathrm{Me}, \mathbf{B}\right), 169.22\left(\mathrm{CO}_{2} \mathrm{Me}, \mathbf{A}\right)$, $169.4\left(\mathrm{CO}_{2} \mathrm{Me}, \mathbf{A}\right), 169.5\left(\mathrm{CO}_{2} \mathrm{Me}, \mathbf{B}\right), 170.2\left(\mathrm{CO}_{2} \mathrm{Me}, \mathbf{B}\right), 170.3$ $\left(\mathrm{CO}_{2} \mathrm{Me}, \mathbf{B}\right), 170.6\left(\mathrm{CO}_{2} \mathrm{Me}, \mathrm{A}\right), 170.8\left(\mathrm{CO}_{2} \mathrm{Me}, \mathrm{A}\right)$; IR (Nujol, cm^{-1}) 2950, 2870, 1735, 1520, 1470, 1380, 1250, 1160, 1035, 820, 730; MS MALDI-TOF m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O}_{12} \mathrm{Na}$ 601, found [M + $\mathrm{Na}]^{+}$601. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O}_{12}$: C, 61.22; H, 6.16. Found: C, 61.51; H, 6.28.

Dimethyl 9-($2^{\prime \prime}, 3^{\prime \prime}$-Dihydro- $1^{\prime \prime}, 4^{\prime \prime}$-benzodioxin- $6^{\prime \prime}$-yl)-6-[3'-methoxy-2'-(methoxycarbonyl)-3'-oxopropyl]-2,3,8,9-tetrahydronaphtho[2,3-b][1,4]dioxine-7,7(6H)-dicarboxylate (7 d). A solution of $\mathrm{SnCl}_{4}(318 \mathrm{mg}, 0.14 \mathrm{~mL}, 1.22 \mathrm{mmol})$ in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}_{2}$ $(1 \mathrm{~mL})$ was added to a solution of $11(210 \mathrm{mg}, 0.82 \mathrm{mmol})$ in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}_{2}(13 \mathrm{~mL})$ at $-40^{\circ} \mathrm{C}$. The resulting mixture was allowed to warm to room temperature during 3 h and worked up as described above to yield 7 d ($85 \mathrm{mg}, 40 \%$, dr 57:43) as colorless oil. $R_{\mathrm{f}} 0.17$ (hexane/ethyl acetate 2:1); ($6 R S, 9 R S$)-7d (major isomer): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 2.03\left(\mathrm{ddd},{ }^{2} J=13.7 \mathrm{~Hz},{ }^{3} J_{1,2^{\prime}}=4.6 \mathrm{~Hz},{ }^{3} J_{1,6}=\right.$ $\left.10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}_{2}\right), 2.16\left(\mathrm{ddd},{ }^{2} J=13.7 \mathrm{~Hz},{ }^{3} J_{1^{\prime}, 6}=3.0 \mathrm{~Hz},{ }^{3} J_{1^{\prime}, 2^{\prime}}=\right.$ $\left.10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}_{2}\right), 2.57\left(\mathrm{ddd},{ }^{2} J=14.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{8,9}=5.0 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{8,6}=\right.$ $\left.0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(8) \mathrm{H}_{2}\right), 2.86\left(\mathrm{dd},{ }^{2} \mathrm{~J}=14.8 \mathrm{~Hz},{ }^{3} J_{8,9}=9.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{C}(8) \mathrm{H}_{2}\right), 3.34-3.36(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}), 3.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.50(\mathrm{dd}$, $\left.{ }^{3} J_{2^{\prime}, 1^{\prime}}=4.6 \mathrm{~Hz},{ }^{3} J_{2^{\prime}, 1^{\prime}}=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}\left(2^{\prime}\right) \mathrm{H}\right), 3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.74$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.09\left(\right.$ br. dd, ${ }^{3} \mathrm{~J}_{9,8}=5.0 \mathrm{~Hz},{ }^{3} J_{9,8}=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(9) \mathrm{H}), 4.16-4.24\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 6.31\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{10,9}=0.7\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}(10) \mathrm{H}), 6.55\left(\mathrm{dd},{ }^{3} J=8.3 \mathrm{~Hz},{ }^{4} J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}\left(7^{\prime \prime}\right) \mathrm{H}\right)$, $6.58\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}\left(5^{\prime \prime}\right) \mathrm{H}\right), 6.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(5) \mathrm{H}), 6.76\left(\mathrm{~d},{ }^{3} \mathrm{~J}=\right.$ $\left.8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}\left(8^{\prime \prime}\right) \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 31.2\left(\mathrm{CH}_{2}\right)$, $33.8\left(\mathrm{CH}_{2}\right), 40.0(\mathrm{CH}), 41.2(\mathrm{CH}), 49.9(\mathrm{CH}), 52.4\left(\mathrm{OCH}_{3}\right), 52.6$ $\left(\mathrm{OCH}_{3}\right), 52.7\left(\mathrm{OCH}_{3}\right), 52.8\left(\mathrm{OCH}_{3}\right), 57.2\left(\mathrm{OCH}_{2}\right), 60.4(\mathrm{C}), 64.3$ $\left(\mathrm{OCH}_{2}\right), 64.4\left(2 \times \mathrm{OCH}_{2}\right), 116.9(\mathrm{CH}, \mathrm{Ar}), 117.1(\mathrm{CH}, \mathrm{Ar}), 117.3$ (CH, Ar), 118.1 (CH, Ar), 121.9 (CH, Ar), 130.3 (C, Ar), 130.4 (C, $\mathrm{Ar}), 139.2$ (C, Ar), 141.8 (C, Ar), 142.0 (C, Ar), 142.4 (C, Ar), 143.2 (C, Ar), $169.4\left(\mathrm{CO}_{2} \mathrm{Me}\right), 169.5\left(\mathrm{CO}_{2} \mathrm{Me}\right), 170.8\left(\mathrm{CO}_{2} \mathrm{Me}\right), 170.9$ $\left(\mathrm{CO}_{2} \mathrm{Me}\right)$. (6RS,9SR)-7d (minor isomer): ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 600$ $\mathrm{MHz}) \delta 1.99\left(\mathrm{ddd},{ }^{2} J=13.7 \mathrm{~Hz},{ }^{3} J_{1^{\prime}, 2^{\prime}}=4.8 \mathrm{~Hz},{ }^{3} J_{1^{\prime}, 6}=10.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{C}\left(1^{\prime}\right) \mathrm{H}_{2}$), 2.08 (ddd, ${ }^{2} J=13.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}^{\prime}, 6=3.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{1,2}{ }^{2}=10.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}\left(1^{\prime}\right) \mathrm{H}_{2}\right), 2.28\left(\mathrm{dd},{ }^{2} J=14.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{8,9}=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(8) \mathrm{H}_{2}\right), 2.69$ (ddd, $\left.{ }^{2} J=14.4 \mathrm{~Hz},{ }^{3} J_{8,9}=7.1 \mathrm{~Hz},{ }^{4} J_{8,6}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(8) \mathrm{H}_{2}\right), 3.32-$ $3.33(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}), 3.64\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{2,1^{\prime}}=4.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{2,11^{\prime}}=10.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{C}\left(2^{\prime}\right) \mathrm{H}\right), 3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.70-3.71(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{C}(9) \mathrm{H}), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.16-4.24(\mathrm{~m}, 8 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 6.34\left(\mathrm{~d},{ }^{4} J=0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(10) \mathrm{H}\right), 6.64\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz},{ }^{4} J=\right.$ $\left.2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}\left(7^{\prime \prime}\right) \mathrm{H}\right), 6.65\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}\left(5^{\prime \prime}\right) \mathrm{H}\right), 6.66(\mathrm{~s}, 1 \mathrm{H}$,
$\mathrm{C}(5) \mathrm{H}), 6.80\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}\left(8^{\prime \prime}\right) \mathrm{H}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150\right.$ $\mathrm{MHz}) \delta 33.0\left(\mathrm{CH}_{2}\right), 33.8\left(\mathrm{CH}_{2}\right), 40.5(\mathrm{CH}), 42.3(\mathrm{CH}), 49.5(\mathrm{CH})$, $52.63\left(\mathrm{OCH}_{3}\right), 52.67\left(\mathrm{OCH}_{3}\right), 52.72\left(\mathrm{OCH}_{3}\right), 52.85\left(\mathrm{OCH}_{3}\right), 58.6$ $\left(\mathrm{OCH}_{2}\right), 58.9(\mathrm{C}), 64.3\left(\mathrm{OCH}_{2}\right), 64.4\left(2 \times \mathrm{OCH}_{2}\right), 116.9(\mathrm{CH}, \mathrm{Ar})$, 117.2 (CH, Ar), 117.7 (CH, Ar), 118.4 (CH, Ar), 121.4 (CH, Ar), 129.9 (C, Ar), 130.8 (C, Ar), 139.2 (C, Ar), 141.8 (C, Ar), 142.2 (C, $\mathrm{Ar}), 142.5(\mathrm{C}, \mathrm{Ar}), 143.5(\mathrm{C}, \mathrm{Ar}), 169.3\left(\mathrm{CO}_{2} \mathrm{Me}\right), 169.5\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, $170.3\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, $170.4\left(\mathrm{CO}_{2} \mathrm{Me}\right)$; IR ($\mathrm{Nujol} \mathrm{cm}^{-1}$) 2945, 2865, 1735, 1595, 1510, 1475, 1380, 1300, 1220, 1085, 900, 825, 755, 735; MS MALDI-TOF m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O}_{12} \mathrm{Na} 607$, found $[\mathrm{M}+\mathrm{Na}]^{+} 607$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O}_{12}$: C, 61.64; H, 5.52. Found: C, 61.53; H, 5.75 .

Dimethyl 7-(3-Methoxy-2-(methoxycarbonyl)-3-oxopropyl)-4-(thiophene-2-yl)-4,5-dihydrobenzo[b]thiophene-6,6(7H)-dicarboxylate (7e). A solution of $\mathrm{SnCl}_{4}(260 \mathrm{mg}, 0.12 \mathrm{~mL}, 1.00$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}(1 \mathrm{~mL})$ was added to a solution of $1 \mathrm{~m}(200 \mathrm{mg}$, $0.83 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}(13 \mathrm{~mL})$ at $-20{ }^{\circ} \mathrm{C}$. The resulting mixture was heated to $50^{\circ} \mathrm{C}$ within 0.5 h , stirred at this temperature for 0.5 h , and worked up as described above to yield $7 \mathrm{e}(156 \mathrm{mg}, 78 \%$, $\mathrm{dr} 71: 29)$ as a colorless oil: $R_{f} 0.46\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .(4 R S, 7 R S)-7 \mathrm{e}$ (major isomer): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 2.23-2.29\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.64\left(\mathrm{dd},{ }^{2} \mathrm{~J}=\right.$ $\left.14.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.86\left(\mathrm{dd},{ }^{2} \mathrm{~J}=14.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.57\left(\mathrm{dd},{ }^{3} \mathrm{~J}=6.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{CH}), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.81-3.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}\right), 4.47\left(\mathrm{dd},{ }^{3} \mathrm{~J}=5.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{CH}$), 6.52 (br. d, $\left.{ }^{3} \mathrm{~J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{Th}\right), 6.74\left(\mathrm{~d},{ }^{3} \mathrm{~J}=5.2 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{CH}, \mathrm{Th}), 6.83\left(\mathrm{dd},{ }^{3} J=3.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{Th}\right), 7.12$ $\left(\mathrm{d},{ }^{3} J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{Th}\right), 7.16\left(\mathrm{dd},{ }^{3} J=5.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{CH}, \mathrm{Th})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 32.9\left(\mathrm{CH}_{2}\right), 35.2(\mathrm{C}(4) \mathrm{H})$, $36.3\left(\mathrm{C}(5) \mathrm{H}_{2}\right), 38.3(\mathrm{C}(7) \mathrm{H}), 50.4\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}\right), 52.4\left(\mathrm{OCH}_{3}\right)$, $52.66\left(\mathrm{OCH}_{3}\right), 52.69\left(\mathrm{OCH}_{3}\right), 52.70\left(\mathrm{OCH}_{3}\right), 58.0(\mathrm{C}), 122.8(\mathrm{CH}$, Th), 124.0 (CH, Th), 125.4 (CH, Th), 126.2 (CH, Th), 127.8 (CH, $\mathrm{Th}), 134.7$ (C, Th), 138.1 (C, Th), 148.2 (C, Th), $169.2\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, $169.3\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, $169.7\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, 170.1 ($\mathrm{CO}_{2} \mathrm{Me}$). (4RS,7SR)-7e (minor isomer): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 2.06$ (ddd, ${ }^{2} \mathrm{~J}=13.9$ $\mathrm{Hz},{ }^{3} J=4.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $2.13\left(\mathrm{ddd},{ }^{2} J=13.9 \mathrm{~Hz},{ }^{3} J=\right.$ $\left.3.3 \mathrm{~Hz},{ }^{3} J=10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.43\left(\mathrm{dd},{ }^{2} J=14.4 \mathrm{~Hz},{ }^{3} J=11.3 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.90\left(\mathrm{ddd},{ }^{2} J=14.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz},{ }^{4} J=1.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, CH_{2}), $3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.80-3.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.83-3.85(\mathrm{~m}, 1 \mathrm{H}$, CH), 4.18 (dd, $\left.{ }^{3} J=6.6 \mathrm{~Hz},{ }^{3} J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right) 6.65\left(\mathrm{~d},{ }^{3} \mathrm{~J}=5.1\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{Th}), 6.90\left(\right.$ br.d, $\left.{ }^{3} \mathrm{~J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{Th}\right), 6.95\left(\mathrm{dd},{ }^{3} J=\right.$ $\left.3.5 \mathrm{~Hz},{ }^{3} J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{Th}\right), 7.07\left(\mathrm{~d},{ }^{3} \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{Th}\right)$, 7.18 (br. d, ${ }^{3}$ = $\left.=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{Th}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta$ $33.4\left(\mathrm{CH}_{2}\right), 33.9\left(\mathrm{C}(5) \mathrm{H}_{2}\right), 36.0(\mathrm{CH}), 37.0(\mathrm{C}(7) \mathrm{H}), 49.9$ $\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}\right), 52.69\left(\mathrm{OCH}_{3}\right), 52.70\left(\mathrm{OCH}_{3}\right), 52.95\left(\mathrm{OCH}_{3}\right)$, $52.97\left(\mathrm{OCH}_{3}\right), 59.8(\mathrm{C}), 123.4(\mathrm{CH}, \mathrm{Th}), 123.9(\mathrm{CH}, \mathrm{Th}), 124.6$ (CH, Th), 126.7 (CH, Th), 127.4 (CH, Th), 135.9 (C, Th), 137.0 (C, Th), $147.8(\mathrm{C}, \mathrm{Th}), 169.1\left(\mathrm{CO}_{2} \mathrm{Me}\right), 169.3\left(\mathrm{CO}_{2} \mathrm{Me}\right), 169.7$ $\left(\mathrm{CO}_{2} \mathrm{Me}\right), 170.1\left(\mathrm{CO}_{2} \mathrm{Me}\right)$; IR (film, $\left.\mathrm{cm}^{-1}\right) 2955,2870,1745,1440$, 1250, 1160, 1080, 925, 850, 800, 715; HRMS MALDI-TOF m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{8} \mathrm{~S}_{2} 480.0913$, found [M] ${ }^{+}$480.0950. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{8} \mathrm{~S}_{2}$: C, 54.99; H, 5.03. Found: C, 54.85; H, 5.15.
Dimethyl 7-(3-Methoxy-2-(methoxycarbonyl)-3-oxopropyl)-2-methyl-4-(5-methylthiophene-2-yl)-4,5-dihydrobenzo[b]-thiophene-6,6(7H)- dicarboxilate (7f). A solution of $\mathrm{SnCl}_{4}(260$ $\mathrm{mg}, 0.12 \mathrm{~mL}, 1.00 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}(1 \mathrm{~mL})$ was added to a solution of $1 \mathrm{n}(200 \mathrm{mg}, 0.79 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}(9 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$. The resulting mixture was kept at $-20^{\circ} \mathrm{C}$ for 6 h , warmed to room temperature, and worked up as described above to yield $7 \mathrm{f}(130 \mathrm{mg}$, 54%, dr 56:44) as a yellow oil: $R_{f} 0.25-0.35$ (diethyl ether/hexane 1:1). (4RS,7RS)-7f (major isomer): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ 2.20-2.29 (m, 2H, CH 2), 2.38 (br. s, 3H, Me), 2.41 (d, ${ }^{4} J=0.9 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{Me}), 2.56\left(\mathrm{dd},{ }^{2} \mathrm{~J}=14.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.78\left(\mathrm{dd},{ }^{2} J=\right.$ $\left.14.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.45\left(\mathrm{dd},{ }^{3} \mathrm{~J}=6.1\right.$ $\left.\mathrm{Hz},{ }^{3} \mathrm{~J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.80-3.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}\right), 4.28(\mathrm{dd}$, $\left.{ }^{3} J=5.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 6.34\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Th}\right), 6.39$ $\left(\mathrm{d},{ }^{4} J=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Th}\right), 6.48\left(\mathrm{dd},{ }^{3} \mathrm{~J}=3.3,{ }^{4} \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Th}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 15.3\left(2 \times \mathrm{CH}_{3}\right), 32.8\left(\mathrm{CH}_{2}\right), 35.3$
$(\mathrm{C}(4) \mathrm{H}), 36.3\left(\mathrm{C}(5) \mathrm{H}_{2}\right), 38.3(\mathrm{C}(7) \mathrm{H}), 50.4\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}\right), 52.3$ $\left(\mathrm{OCH}_{3}\right), 52.7\left(3 \times \mathrm{OCH}_{3}\right), 59.6(\mathrm{C}), 125.1(\mathrm{CH}, \mathrm{Th}), 125.2(\mathrm{CH}$, Th), 125.9 (CH, Th), 134.5 (C, Th), 135.4 (C, Th), 136.9 (C, Th), 138.3 (C, Th), $145.7(\mathrm{C}, \mathrm{Th})$, $169.3\left(2 \times \mathrm{CO}_{2} \mathrm{Me}\right)$, $170.2\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, $170.3\left(\mathrm{CO}_{2} \mathrm{Me}\right)$; (4RS,7SR)-7f (minor isomer): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 1.99-2.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.34\left(\mathrm{~d},{ }^{4} J=0.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}\right)$, $2.43\left(\mathrm{~d},{ }^{4} \mathrm{~J}=0.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}\right), 2.41-2.46\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.82\left(\mathrm{dd},{ }^{2} J=\right.$ $\left.14.2 \mathrm{~Hz},{ }^{3} J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.57\left(\mathrm{dd},{ }^{3} J=3.0,{ }^{3} J=9.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{CH}), 3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.80-3.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}\right), 4.00(\mathrm{dd}$, $\left.{ }^{3} J=6.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}=10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 6.31\left(\mathrm{~d},{ }^{4} \mathrm{~J}=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Th}\right), 6.58$ (dd, $\left.{ }^{3} J=3.3 \mathrm{~Hz},{ }^{4} J=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Th}\right), 6.68\left(\mathrm{~d},{ }^{3} J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Th}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 15.3\left(\mathrm{CH}_{3}\right), 15.4\left(\mathrm{CH}_{3}\right), 33.4\left(\mathrm{CH}_{2}\right)$, $33.7\left(\mathrm{C}(5) \mathrm{H}_{2}\right), 36.3(\mathrm{CH}), 36.8(\mathrm{C}(7) \mathrm{H}), 49.9\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}\right), 52.6$ $\left(\mathrm{OCH}_{3}\right), 52.7\left(\mathrm{OCH}_{3}\right), 52.9\left(\mathrm{OCH}_{3}\right), 53.0\left(\mathrm{OCH}_{3}\right), 58.0(\mathrm{C}), 124.3$ (CH, Th), 124.5 (CH, Th), 125.5 (CH, Th), 134.3 (C, Th), 135.7 (C, $\mathrm{Th}), 137.7$ (C, Th), 138.3 (C, Th), 145.7 (C, Th), $169.27\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, $169.32\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, $169.8\left(2 \times \mathrm{CO}_{2} \mathrm{Me}\right)$; IR $\left(\mathrm{Nujol}, \mathrm{cm}^{-1}\right) 2965,2930$, 2869, 1740, 1660, 1460, 1380, 1255, 1087, 1054, 800; GC-MS m/z 508 (12) $[\mathrm{M}]^{+}, 376$ (38), 317 (354), 281 (49), 207 (100), 191 (10). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{8} \mathrm{~S}_{2}$: C, $56.68 ; \mathrm{H}, 5.55$. Found: C, $56.43 ; \mathrm{H}$, 5.45.

Dimethyl 5,6,7-Trimethoxy-1-[3-methoxy-2-(methoxycar-bonyl)-3-oxopropyl]-4-(3,4,5-trimethoxyphenyl)-3,4-dihydro-naphthalene-2,2(1H)-dicarboxylate (7g). A solution of SnCl_{4} $(193 \mathrm{mg}, 0.086 \mathrm{~mL}, 0.74 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}(1 \mathrm{~mL})$ was added to a solution of $1 \mathrm{c}(200 \mathrm{mg}, 0.62 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}(6 \mathrm{~mL})$ at room temperature. The resulting mixture was heated to $60^{\circ} \mathrm{C}$, stirred at this temperature for 3 h , and worked up as described above to yield 7 g (50 $\mathrm{mg}, 21 \%$, $\mathrm{dr} 72: 28$) and 9 a ($130 \mathrm{mg}, 65 \%$, dr 54:46). (1RS,4RS)-7g (major isomer): colorless oil, $R_{f} 0.50$ (diethyl ether); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.09-2.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.19\left(\mathrm{dd},{ }^{2} \mathrm{~J}=14.8\right.$ $\left.\mathrm{Hz},{ }^{3} \mathrm{~J}=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.91\left(\mathrm{dd},{ }^{2} \mathrm{~J}=14.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{CH}_{2}\right), 3.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.43\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{CH}), 3.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.66-3.70(\mathrm{~m}, 1 \mathrm{H}$, CH), $3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.79(\mathrm{~s}, 6 \mathrm{H}, 2 \times$ OCH_{3}), $3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.90(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 4.07\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 6.35(\mathrm{~s}, 2 \mathrm{H}, 2 \times$ $\mathrm{CH}, \mathrm{Ar}), 6.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 33.1$ $\left({ }^{1} J=130 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 33.2\left({ }^{1} \mathrm{~J}=132 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 39.4\left({ }^{1} J=130 \mathrm{~Hz}, \mathrm{CH}\right)$, $\left.41.7\left({ }^{1} \mathrm{~J}=138 \mathrm{~Hz}, \mathrm{CH}\right), 49.9\left({ }^{1} \mathrm{~J}=132 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right)_{2}\right), 52.6\left({ }^{1} \mathrm{~J}=\right.$ $\left.148 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 52.7\left({ }^{1} \mathrm{~J}=148 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 52.8\left({ }^{1}{ }^{1} \mathrm{~J}=148 \mathrm{~Hz}\right.$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 52.9\left({ }^{1} \mathrm{~J}=148 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 55.6\left({ }^{1} \mathrm{~J}=144 \mathrm{~Hz}, \mathrm{OCH}_{3}\right)$, $56.1\left({ }^{1} J=144 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{3}\right), 58.6$ (C), $59.6\left({ }^{1} J=144 \mathrm{~Hz}, \mathrm{OCH}_{3}\right)$, $60.4\left({ }^{1} J=145 \mathrm{~Hz}, \mathrm{OCH}_{3}\right), 60.9\left({ }^{1} J=146 \mathrm{~Hz}, \mathrm{OCH}_{3}\right), 103.9\left({ }^{1} J=157\right.$ $\mathrm{Hz}, 2 \times \mathrm{CH}, \mathrm{Ar}), 107.8\left({ }^{1} \mathrm{~J}=158 \mathrm{~Hz}, \mathrm{CH}, \mathrm{Ar}\right), 122.6$ (C, Ar), 133.2 (C, Ar), 136.1 (C, Ar), 141.4 (C, Ar), 144.4 (C, Ar), 152.2 (C, Ar), 152.5 (C, Ar), $153.3(2 \times \mathrm{C}, \mathrm{Ar}), 169.2\left(\mathrm{CO}_{2} \mathrm{Me}\right), 169.5\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, $169.9\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, $170.1\left(\mathrm{CO}_{2} \mathrm{Me}\right)$; IR ($\mathrm{Nujol} \mathrm{cm}^{-1}$) 2970, 2855, 1745, 1602, 1505, 1480, 1366, 1245, 1120, 1007, 875; HRMS MALDI-TOF m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{O}_{14}$ 648.2412, found [M] ${ }^{+}$648.2418. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{O}_{14}$: $\mathrm{C} 59.25 ; \mathrm{H}, 6.22$. Found: C, $59.23, \mathrm{H}, 6.38$.

Tetramethyl (1RS,3aSR,5aRS,9aSR)-1-(4-Methoxyphenyl)-7-oxo-3a,4,6,7-tetrahydro-1 H -cyclopenta[c]indene-3,3,5,5($2 \mathrm{H}, 5 \mathrm{aH}$)-tetracarboxylate (8). A solution of $\mathrm{SnCl}_{4}(287 \mathrm{mg}, 0.13$ $\mathrm{mL}, 1.1 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{H}_{6}(1 \mathrm{~mL})$ was added to a solution of $1 \mathrm{i}(200 \mathrm{mg}$, $0.76 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{H}_{6}(10 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$, and the resulting mixture was kept at this temperature for 2 h affording 7 a ($120 \mathrm{mg}, 59 \%$, $\mathrm{dr} 90: 10$) and $8(60 \mathrm{mg}, 30 \%) .8$: colorless crystals; mp $159-160^{\circ} \mathrm{C}$; $R_{\mathrm{f}} 0.40$ (diethyl ether); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 0.78 (dd, ${ }^{2} \mathrm{~J}=18.7 \mathrm{~Hz}$, $\left.{ }^{3} J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}_{2}\right), 1.34\left(\mathrm{dd},{ }^{2} J=12.5 \mathrm{~Hz},{ }^{3} J=10.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{C}(4) \mathrm{H}_{2}$), 2.30 (br.d, $\left.{ }^{2} \mathrm{~J}=18.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}_{2}\right), 2.36\left(\mathrm{ddd},{ }^{2} J=12.8\right.$ $\left.\mathrm{Hz},{ }^{3} J=4.6 \mathrm{~Hz},{ }^{4} J=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}_{2}\right), 2.57\left(\mathrm{dd},{ }^{2} \mathrm{~J}=12.5 \mathrm{~Hz},{ }^{3} J=\right.$ $\left.8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(4) \mathrm{H}_{2}\right), 2.84$ (br.d, $\left.{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(5 \mathrm{a}) \mathrm{H}\right), 2.89$ (dd, $\left.{ }^{2} J=12.8 \mathrm{~Hz},{ }^{3} J=14.6, \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}_{2}\right), 2.94\left(\mathrm{dd},{ }^{3} J=14.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=\right.$ $4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(1) \mathrm{H}), 3.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.64-3.67(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{C}(3 \mathrm{a}) \mathrm{H}), 3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.79(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.86\left(\mathrm{~d},{ }^{3} \mathrm{~J}=10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(8) \mathrm{H}\right), 6.84$ $\left(\mathrm{d},{ }^{3} J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}\left(3^{\prime}\right) \mathrm{H}, \mathrm{C}\left(5^{\prime}\right) \mathrm{H}\right), 6.95\left(\mathrm{dd},{ }^{3} \mathrm{~J}=10.3 \mathrm{~Hz},{ }^{4} J=1.7\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}(9) \mathrm{H}), 7.13$ (br.d, $\left.{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}\left(2^{\prime}\right) \mathrm{H}, \mathrm{C}\left(6^{\prime}\right) \mathrm{H}\right) ;{ }^{13} \mathrm{C}$

NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 33.9 ($\left.\mathrm{C}(2) \mathrm{H}_{2}\right), 34.0\left(\mathrm{C}(6) \mathrm{H}_{2}\right), 35.5$ $\left(\mathrm{C}(4) \mathrm{H}_{2}\right), 45.7(\mathrm{C}(5 a) \mathrm{H}), 48.7(\mathrm{C}(1) \mathrm{H}), 51.9\left(\mathrm{CH}_{3}\right), 52.1$ $(\mathrm{C}(3 \mathrm{a}) \mathrm{H}), 52.3\left(\mathrm{CH}_{3}\right), 52.4\left(\mathrm{CH}_{3}\right), 52.8\left(\mathrm{CH}_{3}\right), 53.6(\mathrm{C}(9 \mathrm{a})), 54.8$ $\left(\mathrm{CH}_{3}\right), 61.7(\mathrm{C}), 61.9(\mathrm{C}), 114.3\left(\mathrm{C}\left(3^{\prime}\right) \mathrm{H}, \mathrm{C}\left(5^{\prime}\right) \mathrm{H}\right), 127.1(\mathrm{C}(8) \mathrm{H})$, 127.8 (C(1')), 128.4 (C(2')H, C(6')H), 154.5 (C(9)H), 158.8 $\left(\mathrm{C}\left(4^{\prime}\right)\right), 169.6\left(\mathrm{CO}_{2} \mathrm{Me}\right), 170.1\left(\mathrm{CO}_{2} \mathrm{Me}\right), 170.3\left(\mathrm{CO}_{2} \mathrm{Me}\right), 171.9$ $\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, 195.8 (C(7)). Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{10}$: C 63.03; H, 5.88. Found: C, 63.23, H, 5.94.

Tetramethyl 2,2'-[(1,2,3,5,6,7-Hexamethoxy-9,10-dihy-droanthracene-9,10-diyl)di(methylene)]dimalonate (9a). A solution of $\mathrm{SnCl}_{4}(339 \mathrm{mg}, 0.15 \mathrm{~mL}, 1.3 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}(1 \mathrm{~mL})$ was added to a solution of $\mathbf{1 o}(210 \mathrm{mg}, 0.65 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}(12 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$. The resulting mixture was heated to $50^{\circ} \mathrm{C}$, stirred at this temperature for 1 h , and worked up as described above to yield (9RS,10SR)-9a ($93 \mathrm{mg}, 44 \%$) and (9RS,10RS)-9a ($67 \mathrm{mg}, 32 \%$): dr 58:42. (9RS,10SR)-9a (major isomer): white crystals; mp 214$215{ }^{\circ} \mathrm{C} ; R_{f} 0.42$ (diethyl ether); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 2.47$ (ddd, $\left.{ }^{2} J=14.2 \mathrm{~Hz},{ }^{3} J=5.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}=4.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}^{a} \mathrm{H}\right), 2.63\left(\mathrm{dd},{ }^{3} J=\right.$ $5.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}$), $2.86\left(\mathrm{ddd},{ }^{2} \mathrm{~J}=14.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}=6.8\right.$ $\left.\mathrm{Hz},{ }^{3} \mathrm{~J}=3.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}^{b} \mathrm{H}\right), 3.39\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.45(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.90\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.01\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.45\left(\mathrm{dd},{ }^{3} \mathrm{~J}=3.8\right.$ $\left.\mathrm{Hz},{ }^{3} \mathrm{~J}=4.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}\right), 6.61(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{CH}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 36.1(2 \times \mathrm{CHAr}), 37.9\left(2 \times \mathrm{CH}_{2}\right), 47.6(2 \times$ $\left.\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}\right), 52.2\left(4 \times \mathrm{OCH}_{3}\right), 55.9\left(4 \times \mathrm{OCH}_{3}\right), 60.7(2 \times$ $\left.\mathrm{OCH}_{3}\right), 106.2(2 \times \mathrm{CH}, \mathrm{Ar}), 121.9(2 \times \mathrm{C}, \mathrm{Ar}), 131.6(2 \times \mathrm{C}, \mathrm{Ar})$, $140.7(2 \times \mathrm{C}, \mathrm{Ar}), 150.9(2 \times \mathrm{C}, \mathrm{Ar}), 152.5(2 \times \mathrm{C}, \mathrm{Ar}), 169.79(2 \times$ $\mathrm{CO}_{2} \mathrm{Me}$), $169.84\left(2 \times \mathrm{CO}_{2} \mathrm{Me}\right.$); IR (Nujol, cm^{-1}) 2970, 2855, 1745, 1602, 1505, 1480, 1366, 1245, 1120, 1007, 875. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{O}_{14}$: C, $59.25 ; \mathrm{H}, 6.22$. Found: C, $59.23 ; \mathrm{H}, 6.33$. (9RS,10RS)9 a (minor isomer): colorless oil; $R_{f} 0.58$ (diethyl ether); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 2.21-2.34\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 3.66\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.3\right.$ $\left.\mathrm{Hz},{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}\right), 3.75\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.78(\mathrm{~s}, 6 \mathrm{H}$, $\left.2 \times \mathrm{OCH}_{3}\right), 3.88\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.90\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.92(\mathrm{~s}$, $6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}$), $4.17\left(\mathrm{dd},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}\right), 6.77$ $(\mathrm{s}, 2 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 37.6(2 \times \mathrm{CHAr}), 39.3$ $\left(2 \times \mathrm{CH}_{2}\right), 50.2\left(2 \times \mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}\right), 52.4\left(2 \times \mathrm{OCH}_{3}\right), 52.5(2 \times$ $\left.\mathrm{OCH}_{3}\right), 55.6\left(2 \times \mathrm{OCH}_{3}\right), 56.0\left(2 \times \mathrm{OCH}_{3}\right), 60.7\left(2 \times \mathrm{OCH}_{3}\right), 107.9$ $(2 \times \mathrm{CH}, \mathrm{Ar}), 124.6(2 \times \mathrm{C}, \mathrm{Ar}), 134.8(2 \times \mathrm{C}, \mathrm{Ar}), 140.3(2 \times \mathrm{C}$, $\mathrm{Ar}), 150.7(2 \times \mathrm{C}, \mathrm{Ar}), 152.1(2 \times \mathrm{C}, \mathrm{Ar}), 169.6\left(2 \times \mathrm{CO}_{2} \mathrm{Me}\right), 170.1$ $\left(2 \times \mathrm{CO}_{2} \mathrm{Me}\right)$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{O}_{14}$: C, $59.25 ; \mathrm{H}, 6.22$. Found: C, 59.34; H, 6.35 .
Tetramethyl 2,2'-[(1,3,5,7-Tetramethoxy-9,10-dihydroan-thracene-9,10-diyl)di(methylene)]dimalonate (9b). Sn(OTf) ${ }_{2}$ ($14 \mathrm{mg}, 0.034 \mathrm{mmol}$) was added to a solution of $\mathbf{1 p}(100 \mathrm{mg}, 0.340$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}(3.4 \mathrm{~mL})$ at room temperature. The resulting mixture was heated up to $60^{\circ} \mathrm{C}$, stirred at this temperature for 4 h , and worked up as described above to yield $\mathbf{9 b}$ ($80 \mathrm{mg}, 80 \%$, dr $64: 36$). (9 RS, 10SR)-9b (major isomer): colorless crystals; mp $124-125^{\circ} \mathrm{C} ; R_{f}$ 0.4 (diethyl ether); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 2.42$ (ddd, ${ }^{2} \mathrm{~J}=$ $14.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}=5.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}=3.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}^{a} \mathrm{H}$), $2.67\left(\mathrm{dd},{ }^{3} J=5.1\right.$ $\mathrm{Hz},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}$), $2.98\left(\mathrm{ddd},{ }^{2} J=14.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}\right.$, $\left.{ }^{3} \mathrm{~J}=3.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}^{b} \mathrm{H}\right), 3.34\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.46(\mathrm{~s}, 6 \mathrm{H}, 2 \times$ $\left.\mathrm{OCH}_{3}\right), 3.83\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.87\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 4.48(\mathrm{dd}$, $\left.{ }^{3} J=3.7 \mathrm{~Hz},{ }^{3} J=3.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}\right), 6.34\left(\mathrm{~d},{ }^{4} J=2.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times\right.$ $\mathrm{CH}, \mathrm{Ar}), 6.44\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}, \mathrm{Ar}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $150 \mathrm{MHz}) \delta 35.7\left({ }^{1} J_{\mathrm{CH}}=133 \mathrm{~Hz}, 2 \times \mathrm{CHAr}\right), 36.6\left({ }^{1} \mathrm{~J}_{\mathrm{CH}}=132 \mathrm{~Hz}\right.$, $\left.2 \times \mathrm{CH}_{2}\right), 47.5\left({ }^{1} \mathrm{~J}_{\mathrm{CH}}=129 \mathrm{~Hz}, 2 \times \mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}\right), 52.2\left(4 \times \mathrm{OCH}_{3}\right)$, $55.3\left(4 \times \mathrm{OCH}_{3}\right), 97.2(2 \times \mathrm{CH}, \mathrm{Ar}), 103.2(2 \times \mathrm{CH}, \mathrm{Ar}), 117.0(2 \times$ C, Ar), 138.4 ($2 \times$ C, Ar), $157.9(2 \times \mathrm{C}, \mathrm{Ar}), 159.2(2 \times \mathrm{C}, \mathrm{Ar}), 169.9$ $\left(2 \times \mathrm{CO}_{2} \mathrm{Me}\right)$, $170.1\left(2 \times \mathrm{CO}_{2} \mathrm{Me}\right)$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O}_{12}: \mathrm{C}$, 61.22; H, 6.16. Found: C, 60.95; H, 5.97. (9RS,10RS)-9b (minor isomer): colorless oil; $R_{f} 0.66$ (diethyl ether); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600\right.$ $\mathrm{MHz}) \delta 2.24$ (ddd, ${ }^{2} J=13.9 \mathrm{~Hz},{ }^{3} J=7.1 \mathrm{~Hz},{ }^{3} J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times$ $\mathrm{CH}^{a} \mathrm{H}$), $2.37\left(\mathrm{ddd},{ }^{2} \mathrm{~J}=13.9 \mathrm{~Hz},{ }^{3} J=7.1 \mathrm{~Hz},{ }^{3} J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times\right.$ $\mathrm{CH}^{b} \mathrm{H}$), $3.66\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}\right.$), $3.72(\mathrm{~s}, 6 \mathrm{H}$, $\left.2 \times \mathrm{OCH}_{3}\right), 3.78\left(\mathrm{~s}, 12 \mathrm{H}, 4 \times \mathrm{OCH}_{3}\right), 3.85\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 4.26$ (dd, $\left.{ }^{3} J=7.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}\right), 6.35\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.3 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $2 \times \mathrm{CH}, \mathrm{Ar}), 6.57\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}, \mathrm{Ar}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $150 \mathrm{MHz}) \delta 37.1\left({ }^{1} \mathrm{~J}_{\mathrm{CH}}=131 \mathrm{~Hz}, 2 \times\right.$ CHAr $), 38.8\left({ }^{1} \mathrm{~J}_{\mathrm{CH}}=134 \mathrm{~Hz}\right.$, $\left.2 \times \mathrm{CH}_{2}\right), 50.3\left({ }^{1} \mathrm{~J}_{\mathrm{CH}}=133 \mathrm{~Hz}, 2 \times \mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}\right), 52.4\left(2 \times \mathrm{OCH}_{3}\right)$,
$52.5\left(2 \times \mathrm{OCH}_{3}\right), 55.2\left(2 \times \mathrm{OCH}_{3}\right), 55.4\left(2 \times \mathrm{OCH}_{3}\right), 96.7(2 \times$ CH, Ar), $104.6(2 \times \mathrm{CH}, \mathrm{Ar}), 119.5(2 \times \mathrm{C}, \mathrm{Ar}), 142.2(2 \times \mathrm{C}, \mathrm{Ar})$, $157.4(2 \times \mathrm{C}, \mathrm{Ar}), 159.2(2 \times \mathrm{C}, \mathrm{Ar}), 169.7\left(2 \times \mathrm{CO}_{2} \mathrm{Me}\right), 170.2(2 \times$ $\mathrm{CO}_{2} \mathrm{Me}$); IR (Nujol, cm ${ }^{-1}$) 3000, 2955, 2840, 1735, 1610, 1585, 1489, 1456, 1437, 1346, 1327, 1262, 1200, 1145, 1107, 1055, 1025, 831; MS MALDI-TOF m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O}_{12}$ 588, found [M] ${ }^{+}$588. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O}_{12}$: C, 61.22; H, 6.16. Found: C, 60.99; H, 6.01.

Tetramethyl 2,2'-[(1,2,5,6-Tetramethoxy-9,10-dihydroan-thracene-9,10-diyl)di(methylene)]dimalonate (9c). $\mathrm{Sn}(\mathrm{OTf})_{2}$ $(14 \mathrm{mg}, 0.034 \mathrm{mmol})$ was added to a solution of $\mathbf{1 q}(100 \mathrm{mg}, 0.340$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}(3.4 \mathrm{~mL})$ at room temperature. The resulting mixture was heated to $100^{\circ} \mathrm{C}$, stirred at this temperature for 4 h , and worked up as described above to yield $9 \mathrm{c}(66 \mathrm{mg}, 66 \%$, dr 90:10). ($9 R S, 10 S R$)-9c (major isomer): colorless crystals; mp $153-154^{\circ} \mathrm{C} ; R_{f}$ 0.5 (diethyl ether); H NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.44$ (ddd, ${ }^{2} J=14.1$ $\left.\mathrm{Hz},{ }^{3} \mathrm{~J}=4.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}^{a} \mathrm{H}\right), 2.65\left(\mathrm{dd},{ }^{3} \mathrm{~J}=6.3 \mathrm{~Hz}\right.$, ${ }^{3} J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}$), $2.98\left(\mathrm{ddd},{ }^{2} J=14.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz},{ }^{3} J=3.9\right.$ $\left.\mathrm{Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}^{b} \mathrm{H}\right), 3.36\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.42(\mathrm{~s}, 6 \mathrm{H}, 2 \times$ $\left.\mathrm{OCH}_{3}\right), 3.88\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.96\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 4.57(\mathrm{dd}$, $\left.{ }^{3} J=3.9 \mathrm{~Hz},{ }^{3} J=4.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}\right), 6.90\left(\mathrm{~d},{ }^{3} J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times\right.$ $\mathrm{CH}, \mathrm{Ar}), 7.06\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}, \mathrm{Ar}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 35.8(2 \times \mathrm{CHAr})$, $38.1\left(2 \times \mathrm{CH}_{2}\right), 47.8(2 \times$ $\left.\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}\right), 52.1\left(2 \times \mathrm{OCH}_{3}\right), 52.2\left(2 \times \mathrm{OCH}_{3}\right), 55.9(2 \times$ $\left.\mathrm{OCH}_{3}\right), 60.6\left(2 \times \mathrm{OCH}_{3}\right), 112.0(2 \times \mathrm{CH}, \mathrm{Ar}), 123.6(2 \times \mathrm{CH}, \mathrm{Ar})$, $129.4(2 \times \mathrm{C}, \mathrm{Ar}), 130.0(2 \times \mathrm{C}, \mathrm{Ar}), 146.2(2 \times \mathrm{C}, \mathrm{Ar}), 150.8(2 \times \mathrm{C}$, $\mathrm{Ar})$, $169.6\left(2 \times \mathrm{CO}_{2} \mathrm{Me}\right)$, $169.8\left(2 \times \mathrm{CO}_{2} \mathrm{Me}\right)$; IR (Nujol, $\left.\mathrm{cm}^{-1}\right) 2945$, 2865, 1735, 1725, 1602, 1500, 1470, 1295, 1220, 1105, 1088, 1042, 1000, 830; MS MALDI-TOF m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O}_{12}$ 588, found $[\mathrm{M}]^{+}$588. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O}_{12}: \mathrm{C}, 61.22 ; \mathrm{H}, 6.16$. Found: C, 61.32; H, 6.18.

Arylidenemalonates were synthesized according to the reported procedures. ${ }^{64,65}$ All compounds, except 10a-c, were described earlier.

Dimethyl 2-(4-Piperidinobenzylidene)malonate (10a). Condensation of 4-(piperidin-1-yl)benzaldehyde $(2.0 \mathrm{~g}, 10.5 \mathrm{mmol})$ with dimethyl malonate ($1.40 \mathrm{~g}, 10.6 \mathrm{mmol}$) in benzene $(20 \mathrm{~mL})$ in the presence of piperidine $(0.04 \mathrm{~mL}, 0.6 \mathrm{mmol})$ and acetic acid $(0.12 \mathrm{~mL}$, $2.2 \mathrm{mmol})$ yielded 10a ($2.9 \mathrm{~g}, 91 \%$) as a yellow solid: $\mathrm{mp} 96-97{ }^{\circ} \mathrm{C}$ (from ethyl acetate/hexane $1: 1) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $1.59-1.75(\mathrm{~m}, 6 \mathrm{H}), 3.25-3.49(\mathrm{~m}, 4 \mathrm{H}), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.89(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 6.84\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}, \mathrm{Ar}\right), 7.32\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.9\right.$ $\mathrm{Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}, \mathrm{Ar}), 7.67(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150\right.$ $\mathrm{MHz}) \delta 23.3\left(\mathrm{CH}_{2}\right), 26.0\left(2 \times \mathrm{CH}_{2}\right), 47.7\left(2 \times \mathrm{NCH}_{2}\right), 52.4$ $\left(\mathrm{OCH}_{3}\right), 52.5\left(\mathrm{OCH}_{3}\right), 114.3(2 \times \mathrm{CH}, \mathrm{Ar}), 121.3(\mathrm{C}), 123.2(\mathrm{C})$, $131.5(2 \times \mathrm{CH}, \mathrm{Ar}), 142.8(\mathrm{CH}=)$, $152.7(\mathrm{C}), 165.1\left(\mathrm{CO}_{2} \mathrm{Me}\right), 167.9$ ($\mathrm{CO}_{2} \mathrm{Me}$); IR (Nujol, cm^{-1}) 2965, 2870, 1730, 1605, 1522, 1460, 1387, 1280, 1230, 1180, 1130, 928, 827, 770, 740; GC-MS m/z 304 (17), 303 (100) $[\mathrm{M}]^{+}, 272$ (28), 212 (15), 184 (15), 156 (10), 129 (17), 115 (10), 102 (12), 59 (52). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4}$: C, 67.31; H, 6.98; N, 4.62. Found: C, 67.58; H, 6.96; N, 4.80.

Dimethyl 2-[(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)methylene]malonate (10b). Condensation of [1,4]benzodioxane6 -carbaldehyde ($2.0 \mathrm{~g}, 12.2 \mathrm{mmol}$) with dimethyl malonate (1.61 g , $12.2 \mathrm{mmol})$ in benzene $(20 \mathrm{~mL})$ in the presence of piperidine (0.12 $\mathrm{mL}, 1.22 \mathrm{mmol})$ and acetic acid $(0.35 \mathrm{~mL}, 6.1 \mathrm{mmol})$ yielded $\mathbf{1 0 b}$ (3.2 $\mathrm{g}, 95 \%$) as a white solid: $\mathrm{mp} 82-83{ }^{\circ} \mathrm{C}$ (from ethyl acetate/hexane 1:1); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.78(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{O}\right), 4.08-4.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.12-4.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 6.77$ $\left(\mathrm{d},{ }^{3} J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{Ar}\right), 6.86\left(\mathrm{dd},{ }^{3} J=8.4 \mathrm{~Hz},{ }^{4} J=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, CH, Ar), 6.89 (d, $\left.{ }^{4} \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{Ar}\right), 7.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=)$) ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 52.5\left(\mathrm{OCH}_{3}\right)$, $52.6\left(\mathrm{OCH}_{3}\right), 64.1$ $\left(\mathrm{OCH}_{2}\right), 64.6\left(\mathrm{OCH}_{2}\right), 117.7(\mathrm{CH}, \mathrm{Ar}), 118.5(\mathrm{CH}, \mathrm{Ar}), 123.4(\mathrm{C})$, 123.8 (CH, Ar), 126.1 (C), 142.4 (CH=), 143.6 (C), 146.1 (C), 164.7 ($\mathrm{CO}_{2} \mathrm{Me}$), 167.4 ($\left.\mathrm{CO}_{2} \mathrm{Me}\right)$; GC-MS m/z 278 (100) [M] ${ }^{+}, 247$ (28), 218 (58), 189 (14), 179 (49), 160 (38), 76 (16), 59 (27); IR (Nujol, cm ${ }^{-1}$) 2950, 2875, 1720, 1640, 1615, 1580, 1505, 1470, 1440, 1380, 1320, 1300, 1250, 1170, 1140, 1000, 980, 960, 940, 920, 895 , 880, 845, 780, 730, 720. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{6}: \mathrm{C}, 60.43 ; \mathrm{H}, 5.07$. Found: C, 60.55; H, 5.18.

Dimethyl 2-(3,5-Dimethoxybenzylidene)malonate (10c). Condensation of 3,5 -dimethoxybenzaldehyde ($0.5 \mathrm{~g}, 3.0 \mathrm{mmol}$) with
dimethyl malonate ($0.4 \mathrm{~g}, 3.0 \mathrm{mmol}$) in benzene (6 mL) in the presence of piperidine ($0.03 \mathrm{~mL}, 0.3 \mathrm{mmol}$) and acetic acid $(0.09 \mathrm{~mL}$, $1.5 \mathrm{mmol})$ yielded $10 \mathrm{c}(0.72 \mathrm{~g}, 85 \%)$ as white solid: $\mathrm{mp} 68-69{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 3.80\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3} \mathrm{O}\right), 3.87(\mathrm{~s}, 6 \mathrm{H}, 2 \times$ $\left.\mathrm{CH}_{3} \mathrm{O}\right), 6.52\left(\mathrm{t},{ }^{4} \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{Ar}\right), 6.60\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.2 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $2 \times \mathrm{CH}, \mathrm{Ar}), 7.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta$ $52.6\left(2 \times \mathrm{OCH}_{3}\right), 55.4\left(2 \times \mathrm{OCH}_{3}\right), 103.2(\mathrm{CH}, \mathrm{Ar}), 107.2(2 \times \mathrm{CH}$, $\mathrm{Ar}), 126.0$ (C), 134.5 (C), $142.8(\mathrm{CH}=), 161.0(2 \times \mathrm{C}), 164.4$ $\left(\mathrm{CO}_{2} \mathrm{Me}\right), 167.0\left(\mathrm{CO}_{2} \mathrm{Me}\right) ; \mathrm{GC}-\mathrm{MS} \mathrm{m} / z 280(100)[\mathrm{M}]^{+}, 249$ (28), 218 (49), 190 (23), 181 (48), 162 (24), 59 (31); IR (Nujol, cm^{-1}) 2940, 2875, 1725, 1600, 1475, 1380, 1250, 1210, 1170, 1085, 1060, 975, 935, 840, 730. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{6}$: C, 59.99; H, 5.75. Found: C, 60.27; H, 5.76.

- ASSOCIATED CONTENT

(S) Supporting Information

NMR spectra of synthesized compounds, crystal X-ray structures of trans-9a and trans-9c (CIF), and results of ab initio calculations. This material is available free of charge via the Internet at http://pubs.acs.org.

- AUTHOR INFORMATION

Corresponding Author

*E-mail: melnikov@excite.chem.msu.ru.

- ACKNOWLEDGMENTS

We thank Prof. K. A. Lyssenko (INEOS RAS) and Dr. V. B. Rybakov (Department of Chemistry, MSU) for X-ray analysis. This work was financially supported by the Russian Foundation of Basic Research (Project 09-03-00244-a).

- REFERENCES

(1) Clayden, J.; Greeves, N.; Warren, S.; Wothers, P. Organic Chemistry; Oxford University Press: New York, 2001; 1536 pp.
(2) Smith, M. B.; March, J. March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, $6^{\text {th }}$ ed.; John Wiley \& Sons: New York, 2007; 2384 pp.
(3) Cerecetto, H.; Gonzalez, M. Top. Heterocycl. Chem. 2007, 10, 265-308.
(4) Sheremetev, A. B.; Makhova, N. N.; Friedrichsen, W. Adv. Heterocycl. Chem. 2001, 78, 65-188.
(5) Grigg, R.; Donegan, G.; Nimal Gunaratne, H. Q.; Kennedy, D. A.; Malone, J. F.; Sridharan, V.; Thianpatanagul, S. Tetrahedron 1989, 45, 1723-1746.
(6) Amornraksa, K.; Barr, D.; Donegan, G.; Grigg, R.; Ratananukul, P.; Sridharan, V. Tetrahedron 1989, 45, 4649-4668.
(7) Groundwater, P. W.; Morton, A. J.; Salter, R. J. Chem. Soc., Chem. Comтии. 1993, 1789-1790.
(8) Ohashi, M.; Taniguchi, T.; Ogoshi, S. Organometallics 2010, 29, 2386-2389, and references cited therein.
(9) Chagarovskiy, A. O.; Ivanova, O. A.; Budynina, E. M.; Trushkov, I. V.; Melnikov, M. Ya. Tetrahedron Lett. 2011, 52, 4421-4425.
(10) Morrocchi, S.; Ricca, A.; Selva, A.; Zanarotti, A. Gazz. Chim. Ital. 1969, 99, 165-175.
(11) Groundwater, P. W.; Nyerges, M.; Fejes, I.; Hibbs, D. E.; Bendell, D.; Anderson, R. J.; McKillop, A.; Sharif, T.; Zhang, W. ARKIVOC 2000, 1, 684-697.
(12) Bunnelle, W. H. Chem. Rev. 1991, 91, 335-362.
(13) Griesbaum, K.; Kim, W.-S. J. Org. Chem. 1992, 57, 5574-5577.
(14) Schank, K.; Beck, H.; Buschlinger, M.; Eder, J.; Heisel, T.; Pistorius, S.; Wagner, C. Helv. Chim. Acta 2000, 83, 801-826.
(15) Buchi, G.; Aver, D. E. J. Am. Chem. Soc. 1956, 78, 689-690.
(16) Ito, S.; Kakehi, A.; Matsuno, T.; Yoshida, J. Bull. Chem. Soc. Jpn. 1980, 53, 2007-2011.
(17) Lisowskaya, N. A.; Maslivets, A. N.; Aliev, Z. G. Tetrahedron 2004, 60, 5319-5323.
(18) Padwa, A.; Precedo, L.; Semones, M. A. J. Org. Chem. 1999, 64, 4079-4088.
(19) Hartke, K.; Bien, N.; Massa, W.; Wocadlo, S. Liebigs Ann. Chem. 1996, 1159-1166.
(20) Huisgen, R.; Kalwinsch, I.; Li, X.; Mloston, G. Eur. J. Org. Chem. 2000, 1685-1694.
(21) Lesniak, S.; Mloston, G.; Urbaniak, K.; Wasiak, P.; Linden, A.; Heimgartner, H. Tetrahedron 2006, 62, 7776-7782.
(22) Freeman, F.; Govindarajoo, G. Rev. Heteroatom Chem. 1995, 13, 123-147.
(23) Huisgen, R. Angew. Chem., Int. Ed. 1963, 2, 565-598.
(24) Foehlish, B.; Herter, R.; Wolf, E.; Stezowski, J. J.; Eckle, E. Chem. Ber. 1982, 115, 355-380.
(25) Nakamura, E.; Yamago, S. Acc. Chem. Res. 2002, 35, 867-877.
(26) Billera, C. F.; Little, R. D. J. Am. Chem. Soc. 1994, 116, 54875488.
(27) Paul, G. C.; Gajewski, J. J. J. Org. Chem. 1996, 61, 1399-1404.
(28) Witt, O.; Mauser, H.; Friedl, T.; Wilhelm, D.; Clark, T. J. Org. Chem. 1998, 63, 959-967.
(29) Koppenhoefer, B.; Winter, W.; Bayer, E. Liebigs Ann. Chem. 1983, 1986-1995.
(30) Klys, A.; Czardybon, W.; Warkentin, J.; Werstiuk, N. H. Can. J. Chem. 2004, 82, 1769-1773.
(31) Concellon, J. M.; Bernad, P. L.; del Solar, V.; Garcia-Granda, S.; Diaz, M. R. Adv. Synth. Catal. 2008, 350, 477-481.
(32) Murray, R. W.; Jeyaraman, R. J. Org. Chem. 1985, 50, 28472853.
(33) Kobayashi, Y.; Kumadaki, I.; Ohsawa, A.; Sekine, Y.; Ando, A. Heterocycles 1977, 6, 1587-1592.
(34) Iranpoor, N.; Firouzabadi, H.; Chitsazi, M.; Jafari, A. A. Tetrahedron 2002, 58, 7037-7042.
(35) Adam, W.; Fröhling, B.; Weinkötz, S. J. Org. Chem. 1998, 63, 9154-9155.
(36) Hansen, G. R.; Burg, T. E. J. Heterocycl. Chem. 1968, 5, 305.
(37) Ramaiah, D.; Muneer, M.; Gopidas, K. R.; Das, P. K.; Rath, N. P.; George, M. V. J. Org. Chem. 1996, 61, 4240-4246.
(38) Chandrasekhar, B. P.; Schmid, U.; Schmid, R.; Heimgartner, H.; Schmid, H. Helv. Chim. Acta 1975, 58, 1191-1200.
(39) Wade, T. N.; Kheribet, R. J. Org. Chem. 1980, 45, 5333-5335.
(40) Palacios, F.; Ochoa de Retana, A. M.; Gil, J. I.; Lopez de Munain, R. Org. Lett. 2002, 4, 2405-2408, and references cited therein.
(41) Kawasaki, T.; Saito, S.; Yamamoto, Y. J. Org. Chem. 2002, 67, 4911-4915.
(42) Reissig, H.-U.; Zimmer, R. Chem. Rev. 2003, 103, 1151-1196.
(43) Yu, M.; Pagenkopf, B. L. Tetrahedron 2005, 61, 321-347.
(44) Agrawal, D.; Yadav, V. K. Chem. Commun. 2008, 6471-6488.
(45) De Simone, F.; Waser, J. Synthesis 2009, 3353-3374.
(46) Carson, C. A.; Kerr, M. A. Chem. Soc. Rev. 2009, 38, 30513060.
(47) Moustafa, M. M. A. R.; Pagenkopf, B. L. Org. Lett. 2010, 12, 3168-3171.
(48) Hu, B.; Xing, S.; Ren, J.; Wang, Z. Tetrahedron 2010, 66, 56715674.
(49) Campbell, M. J.; Johnson, J. S.; Parsons, A. T.; Pohlhaus, P. D.; Sanders, S. D. J. Org. Chem. 2010, 75, 6317-6325.
(50) Karadeolian, A.; Kerr, M. A. J. Org. Chem. 2010, 75, 6830-6841.
(51) Yang, G.; Shen, Y.; Li, K.; Sun, Y.; Hua, Y. J. Org. Chem. 2011, 76, 229-233.
(52) Grover, H. K.; Lebold, T. P.; Kerr, M. A. Org. Lett. 2011, 13, 220-223.
(53) Lu, Z.; Shen, M.; Yoon, T. P. J. Am. Chem. Soc. 2011, 133, 1162-1164.
(54) Smith, A. G.; Slade, M. C.; Johnson, J. S. Org. Lett. 2011, 13, 1996-1999.
(55) Perreault, C.; Goudreau, S. R.; Zimmer, L. E.; Charette, A. B. Org. Lett. 2008, 10, 689-692.
(56) Ding, Q.; Wang, Z.; Wu, J. Tetrahedron Lett. 2009, 50, 198200.
(57) Dias, D. A.; Kerr, M. A. Org. Lett. 2009, 11, 3694-3697.
(58) Hantawong, K.; Murphy, W. S.; Russell, N.; Boyd, D. R. Tetrahedron Lett. 1984, 25, 999-1000.
(59) Venkatesh, G.; Ila, H.; Junjappa, H.; Mathur, S.; Hush, V. J. Org. Chem. 2002, 67, 9477-9480.
(60) While the present paper was being prepared for publication, the transformation of 2 -phenylcyclopropane-1,1-dicarboxylate into the corresponding tetraline was independently reported: Novikov, R. A.; Korolev, V. A.; Timofeev, V. P.; Tomilov, Y. V. Tetrahedron Lett. 2011, 52, 4996-4999.
(61) Ivanova, O. A.; Budynina, E. M.; Grishin, Yu. K.; Trushkov, I. V.; Verteletskii, P. V. Eur. J. Org. Chem. 2008, 5329-5335.
(62) Ivanova, O. A.; Budynina, E. M.; Chagarovskiy, A. O.; Kaplun, A. E.; Trushkov, I. V.; Melnikov, M. Ya. Adv. Synth. Catal. 2011, 353, 1125-1134.
(63) Korotkov, V. S.; Larionov, O. V.; Hofmeister, A.; Magull, J.; de Meijere, A. J. Org. Chem. 2007, 72, 7504-7510.
(64) Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc. 1965, 87, 13531364.
(65) Fraser, W.; Suckling, C. J.; Wood, H. C. S. J. Chem. Soc., Perkin Trans. 1 1990, 3137-3144.
(66) The X-ray CIF files for these structures have been deposited at the Cambridge Crystallographic Data Center (CCDC): deposition nos. CCDC 767227 (9c), 767228 (2d), 768587 (9a), and 779712 ($2 \mathbf{i}$). Copies of the data can be obtained, free of charge, from the CCDC, 12 Union Road, Cambridge, CB2 1EZ UK (e-mail: deposit@ ccdc.cam.ac.uk; Internet: www.ccdc.cam.ac.uk).
(67) See the Supporting Information.
(68) Chagarovskiy, A. O.; Ivanova, O. A.; Rakhmankulov, E. R.; Budynina, E. M.; Trushkov, I. V.; Melnikov, M. Ya. Adv. Synth. Catal. 2010, 352, 3179-3184.
(69) Mueller, G. P.; Bateman, F. C. J. Am. Chem. Soc. 1952, 74, 5631-5632.
(70) Kobayashi, M. European Patent EP2266941, 2010.
(71) Minai, M.; Suzuki, Y.; Hamma, N.; Murayama, E. Ger. Offen. 2431561; Chem. Abstr. 1975, 82, 139717a.
(72) Sapeta, K.; Kerr, M. A. Org. Lett. 2009, 11, 2081-2084.
(73) Ivanova, O. A.; Budynina, E. M.; Chagarovskiy, A. O.; Rakhmankulov, E. R.; Trushkov, I. V.; Semeykin, A. V.; Shimanovskii, N. L.; Melnikov, M. Ya. Chem. Eur. J. 2011, 11, 11738-11742.
(74) Xu, H.; Lv, M.; Tian, X. Curr. Med. Chem. 2009, 16, 327-349.
(75) Gordaliza, M.; Garcia, P. A.; Miguel del Corral, J. M.; Castro, M. A.; Gomez-Zurita, M. A. Toxicon 2004, 44, 441-459, and references cited therein.
(76) We suppose that the more than stoichiometric loading of Lewis acid does not cause complete ring-opening of the small ring due to the competitive binding of Lewis acid to methoxy groups. It provides the appropriate concentration of a parent cyclopropane in the reaction mixture.
(77) The higher nucleophilicity of malonate ion in comparison with activated arenes in reactions with stabilized carbocations was shown definitively: Mayr, H.; Ofial, A. R. J. Phys. Org. Chem. 2008, 21, 584595.
(78) Fang, J.; Ren, J.; Wang, Z. Tetrahedron Lett. 2008, 49, 66596662.
(79) Qu, J.-P.; Deng, C.; Zhou, J.; Sun, X.-L.; Tang, Y. J. Org. Chem. 2009, 74, 7684-7689.

[^0]: Received: August 2, 2011
 Published: September 26, 2011

